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Abstract

Many scientific domains, such as physics, provide multimodal data when observing com-
plex phenomena or when doing experiments. Understanding individual contributions of
each modality can help to optimise experimental setups and sensors, thereby potentially
increasing accuracy on domain-specific tasks that rely on such data. This thesis examines
the role of multimodal data in (downstream) prediction tasks, with a focus on the unique
and shared contributions of the respective modalities. Disentangled representation learn-
ing is a paradigm that aims to extract the independent, underlying factors from data. We
employ this approach for multimodal data, proposing an extension to the disentangled mul-
timodal variational autoencoder (DMVAE) by incorporating an additional optimisation
objective to enforce minimal redundancy between shared and unique latent representations
extracted by the DMVAE. Based on these representations, we train and evaluate several
downstream tasks to study their contributions to the task. We compare this method to
the traditional DMVAE and VAE across multimodal and single-modal configurations and
also compare it directly to regression models. In our experiments, this approach is applied
to the Multimodal Universe (MMU) astronomical dataset, which includes both imagery
and spectral data. We also evaluate the impact of a physical-model-based differentiable
image decoder model for extracting meaningful parameters into the latent space. Addi-
tionally, the setup is applied to HyPlant hyperspectral remote sensing data, which consists
of airborne measurements of Earth’s surface, to study it as a source of multimodal data
to test how much information images and spectra contain about hyperspectral data.
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Task description
The aim of this thesis is to investigate multimodal disentangled representation learning
(DRL) on physics data and to study whether incorporating multimodal information can
increase task performance. The tasks considered may include classification, regression
or detection in the physics domain. Moreover, this thesis will study the unique and
shared information encoded across different modalities and investigate how they affect
task performance. To achieve this, existing architectures, such as multimodal extensions
of VAEs [KW+13] like DMVAEs [LP21], may be adapted or improved, and a suitable
framework for multimodal DRL will be implemented. This approach can be applied to
the recently published Multimodal Universe dataset [AAB+24], which contains multimodal
data in the astronomical domain with potential tasks such as physical property prediction
or galaxy morphology classification. Also, other physics datasets may be evaluated.

A small complementary aspect of the thesis is to explore physical model-guided disentan-
gled representation learning. As disentangled representation learning in an unsupervised
way may be unstable, we want to investigate how to incorporate existing physical models
to guide the learning of meaningful disentangled representations while also incorporating
unmodeled features. This requires implementing a differentiable physical model and inte-
grating it into the framework, followed by an evaluation of its impact on the latent space
and task performance.

Overall, the goal is to develop and investigate a multimodal, variational autoencoder-based
framework for physics data that can study the impact of shared and unique information
in multimodal data on a downstream task and apply this framework to the Multimodal
Universe dataset to study which modalities are suited for the task of physical property
prediction of galaxies and also apply this framework to other physics datasets.
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Chapter 1

Introduction

In many scientific domains, complex processes are investigated from multiple complemen-
tary perspectives. Combining information from various measurements of the same process
or object into multimodal datasets can potentially allow for a more accurate and compre-
hensive view of the underlying information. This complementary information contained
in the data can then be leveraged to potentially improve the predictive performance on
downstream tasks, predicting meaningful properties more accurately. This is especially
relevant when measurements are noisy and single modalities alone cannot fully represent
the process or object studied. This can happen in scientific domains, such as physics,
where vast amounts of data are collected using several sensors optimised for different pur-
poses. This multimodal data can, for example, include images, spectra or other forms of
data. However, as not all modalities can make an equal contribution to a given prediction
task, it is also important to understand which modalities can effectively help extract the
desired information and provide useful and unique content, and which modalities do not
provide additional helpful information or only make redundant contributions ot the task.
This information can help optimise a sensor setup to capture complementary data that
targets observations that are most informative for the desired task.

To address this, we require a suitable method that can process large amounts of data and
can accurately and efficiently extract an informative, independent (disentangled) latent
variable representation of the data, also known as disentangled representation learning
(DRL) [WCT+24], based on which we can evaluate downstream task performance. Deep
learning has been around for decades, but has gained traction in recent years through the
introduction of novel probabilistic methods, such as the Variational Autoencoder (VAE)
[KW+13], faster algorithms, and hardware for training at larger scales. This has made
machine learning a standard tool for analysing physics data. Using deep models designed
for handling multimodal data enables the extraction of shared and unique representations,
suitable for studying where essential information is distributed across modalities.

This thesis explores the potential of a (model-agnostic) multimodal variational autoen-
coder framework to study downstream prediction tasks on the unique and shared con-
tribution of each modality. We investigate whether and to what extent the usage of
multimodal data, compared to individual modalities, can influence the accuracy of phys-
ical property predictions and other downstream tasks. The approach used is based on
an extension of Variational Autoencoders called the Disentangled Multimodal Variational
Autoencoder (DMVAE) [LP21]. These are both generative models that can be used both
to generate novel data and to extract meaningful underlying generative features of the
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data, which can serve as an embedding usable for downstream tasks. The DMVAE is
suited for multimodal data and is designed to extract modality-specific unique features
and features shared between multiple modalities into separate latent spaces. This is use-
ful for investigating unique and shared information between the modalities. To ensure a
clear information-theoretic separation between shared and unique features and to reduce
redundancies between them, we extend this model by an additional penalty on the mu-
tual information between the shared and unique representations. This penalty on mutual
information is the Contrastive Log-ratio Upper Bound on mutual information (CLUB)
[CHD+20]. Using this framework, we can directly determine the contribution of each
latent space by training downstream models on the respective latent spaces.

Our approach combines several advantages of embeddings, VAEs and DMVAEs. It enables
cross-reconstruction from one modality, provides an embedding that strictly separates
unique and shared features usable for downstream tasks and allows for a clearer analysis
of where task-relevant information is encoded compared to the traditional DMVAE. These
separated representations could also be used for further processing.

Astronomical data is a natural choice for applying this framework, as it provides vast
amounts of multimodal data. Astronomical objects are often captured through multiple
sensors, including telescope images, spectra, hyperspectral measurements, time-series ob-
servations, and tabular data, which include inferred physical properties or morphologies
of galaxies. In this thesis, the focus lies on images and spectra as two modalities that
capture different views of an object, containing crucial physical information about galax-
ies. We utilise these modalities for the downstream task of physical property prediction,
encompassing properties such as redshift, stellar mass, and others [AAB+24]. Using this
approach on this data, we can study which physical property of the galaxy is encoded
at which modality. To assess the potential benefits of this multimodal feature extraction
for physical property inference, we compare the performance of the proposed extended
DMVAE model with CLUB to that of the traditional DMVAE and VAE, as well as with
single-modal data. In addition to our extended DMVAE approach, we investigate whether
physical-model-based differentiable decoder models can guide the model to learn a seman-
tically meaningful latent representation, thereby improving task performance. Specifically,
we utilise a physical-model-based image decoder that aims to reconstruct galaxy images
based on physical parameters, thereby enhancing the interpretability of the latent rep-
resentation. At last, remote sensing hyperspectral data are investigated as a source of
multimodal data.

This thesis guides you through related work, provides the necessary background, outlines
the general framework that contains the methods used, and presents the experiments
conducted to evaluate the framework and the datasets employed. It is structured in the
following way:

In chapter 2, we present previous work related to processing/evaluating multimodal data
and also reference previous work on the physics datasets used. Afterwards, chapter 3 intro-
duces all necessary concepts and background from probability theory, including methods
for estimating mutual information, such as CLUB [CHD+20], and an application of these
methods, which is to estimate task contributions similar to our method. We then describe
machine learning concepts, architecture, and generative models, such as VAEs. Here, con-
cepts from disentangled representation learning (DRL) are also described. Afterwards, in
chapter 4, the general problem setting is stated and the framework is introduced. There-
fore, we look at the setup of the learning problem to be evaluated and the motivation
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behind it. Specifically, we examine the Disentangled Multimodal Variational Autoencoder
(DMVAE) [LP21] proposed by Lee and Pavlovic, which serves as the primary architec-
ture we study and base our framework on. Subsequently, the architecture is extended
with CLUB loss to minimise the mutual information between representations. Based on
that framework, two methods are described to investigate the contributions of unique and
shared information between modalities to a downstream task. In chapter 5, we describe
the experiments conducted along with the motivation behind them. For this, we first ex-
plain the evaluation tools, including several metrics and visualisation tools to evaluate the
model’s performance. We also outline the datasets used, which include the Multimodal
Universe [AAB+24] dataset and, later on, also the HyPlant FLUO [SAC+19] remote sens-
ing dataset. Also, corresponding preprocessing steps, model architectures and further
training details are described. We then present several experiments and their results, in-
cluding hyperparameter optimisation, several parameter studies, and general evaluation
experiments that examine the combination of image and spectrum modalities and com-
pare it to the use of single modalities. This is done using the VAE, DMVAE and DMVAE
with CLUB. Additionally, we investigate the inclusion of a differentiable physical-model-
based decoder for predicting a semantically meaningful latent space and its impact on
downstream task performance. Furthermore, we experiment with hyperspectral data from
HyPlant as a data source that combines images and spectra, by decomposing the hyper-
spectral data into these modalities to apply our framework and thereby studying which
modality contains more information about the underlying hyperspectral data. At the end
in chapter 6, we conclude our results.

In summary, the key contributions of this thesis are:

1. We propose an extension of DMVAE with CLUB loss capable of providing redundancy-
free shared and private representations of multimodal data. We demonstrate how
this approach can be utilised to assess the impact of both unique and shared features
on downstream tasks, and we test how the additional CLUB loss affects the model’s
performance, latent space and mutual information between the representations.

2. We apply the framework to galaxy imaging and spectral data, evaluating the contri-
butions of these modalities to the task of predicting physical properties for galaxies.
Here, we conduct a thorough comparison of the physical property prediction task
using VAEs, DMVAEs, DMVAEs with CLUB, and regression models on both single-
and multimodal data. We also use our framework to analyse hyperspectral remote
sensing data, aiming to identify the information that structural images and spectra
convey about the underlying hyperspectral data.

3. We do several hyperparameter optimisations to study their impact on the model’s
performance. Additionally, we conduct a test on different latent sizes to investigate
their effects. In doing so, we determine suitable representation sizes for image and
spectral modalities, as well as for their unique and shared features.

4. We also study how to extract interpretable parameters from the data simultaneously.
To address this, we specifically investigate whether incorporating a physical-model-
based image decoder for galaxy images into the framework can help guide the learning
of a semantically meaningful latent space and assess its impact on the downstream
task.
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Chapter 2

Related Work

Several studies have explored topics similar to those addressed in this thesis. We begin
with a literature review, which is subdivided into work related to multimodal methods
and models, as well as methods designed explicitly for (astro-) physics data.

2.1 Work related to Multimodal Methods

Variational Autoencoders [KW+13] were introduced by Kingma and Welling as a proba-
bilistic method for mapping data into a lower-dimensional latent distribution, capturing
the underlying generative factors of the data that can be used for generating novel data.
Wang et al. provide an overview of various methods for extracting informative, disentan-
gled representations of data using VAEs and other models [WCT+24]. An extension of
the VAE that is more semantically meaningful is the Disentangled Multimodal Variational
Autoencoder (DMVAE) [LP21] by Lee and Pavlovic. This model improves upon previ-
ous work, such as JMVAE [SNM16], JVAE [VFHM17], or MVAE [WG18], by utilising a
product-of-experts approach to extract features that are unique to a modality or shared
between modalities, and enables cross-reconstruction capabilities. An extension of this
type of model is the SSDMM-VAE [MSSA23], which, in addition to shared and unique
latent spaces, utilises both discrete and continuous latent spaces to enhance performance.
Other current models include BridgedVAE [YSNH20]. Due to its meaningful latent struc-
ture, cross-reconstruction capabilities, and well-performing nature, this thesis focuses on
the DMVAE.

Another method for estimating contributions of multimodal data to a downstream task is
Partial Information Decomposition [WB10], introduced byWilliams et al. This information-
theoretic framework is designed to study the unique, synergistic, and redundant informa-
tion that multiple modalities contain about some target variable and is used in neuroscience
or machine learning due to its explainable nature.

2.2 Work related to (Astro-) Physics data analysis

Several previous works have applied autoencoder and VAE-like architectures to astronom-
ical data. Schawinski et al. propose a method using a Fader network [LZU+17], a network
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that enables the controlled manipulation of specific attributes, to disentangle features and
physical properties in the latent space and test which physical properties are responsible
for transforming one data population into another [STZ18], thereby evaluating the plau-
sibility of hypotheses. Later, Aragon-Calvo introduced an autoencoder framework that
incorporates a physical model decoder of galaxy images to reconstruct the original data
[ACC20]. Therby, the model automatically predicts the physically semantically mean-
ingful input parameters of the physical model corresponding to the shape of the galaxy.
Takeishi et al. propose a more sophisticated approach that incorporates a physical model
into an autoencoder framework, enabling it to additionally model features in the data that
are not captured by the physical model, using additional regularisation methods [TK21].
Later on, several VAE architectures have been explored on galaxy image data [XSdS+23],
[Dia22]. Iwasaki et al. have applied the VAE to galaxy spectra from SDSS and exam-
ined low-dimensional latent representations on their information content about underlying
physical properties [ICT23].

Recently, the Multimodal Universe dataset [AAB+24] was published, a large-scale multi-
modal scientific astronomical dataset designed for machine learning research. Based on this
dataset, Parker et al. introduced AstroCLIP [PLG+24], a foundation model for embedding
galaxy images and spectral data into a meaningful embedding space. For this, they utilise
separate transformer encoders for images and spectra and minimise a contrastive loss in
the embedding space to align corresponding image and spectrum embeddings. Based on
these embeddings, they evaluate the performance of several downstream tasks. They pre-
dict physical properties including stellar mass, specific star formation rate, mass-weighted
metallicity and mass-weighted stellar age from the PROVABGS catalogue [HKT+23], as
well as the photometric redshift from DESI [AAA+16], and they use the Galaxy Zoo DE-
CaLS [WLG+22] dataset to test galaxy morphology classification [PLG+24]. Compared to
this approach, our approach can differentiate whether the information for the downstream
task is encoded in the unique or shared features of the modalities. We can either obtain
an embedding for a single modality or a more precise embedding when combining both
modalities. Additionally, our model can directly cross-reconstruct the other modality in-
stead of relying on similarity search. For the HyPlant dataset, we refer to [SAC+19] for
more details.
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Chapter 3

Essential Background

This chapter introduces the necessary machine learning concepts and methods, which are
later utilised in the framework. We will first introduce concepts of probability theory,
machine learning and architecture design, and then examine how these concepts can be
applied to generate novel data. We then build upon the idea of autoencoders to a proba-
bilistic generative extension called the Variational Autoencoder (VAE) [KW+13]. We then
examine the concept of disentangled representation learning (DRL), which aims to learn
the underlying, separable generative factors of data. Several methods will be described
that can achieve this.

3.1 Probabilistic Background

To understand the methods used later on, it is necessary to introduce some probabilistic
background first. Random variables are functions X : Ω → E that map events from a
sample space Ω to a measurable space E. They are often written as capital letters, and
the probability for some realisation x ∈ E of the random variable is in the discrete case

P (X = x) = P ({ω ∈ Ω|X(ω) = x}).

For easier notation, this will often be abbreviated by p(x). For random variables, the
distinction between the discrete and continuous cases is necessary, depending on whether
the event space is discrete and countable or continuous. We focus on the continuous
case here. However, for both cases, similar formulas and derivations hold, with the main
difference being that for the continuous case, integrals are used, and we need to compute
probabilities over intervals; for the discrete case, sums are used. Probability distributions
p assign probabilities to events. In general, the properties

∫
p(x)dx = 1 and p(x) ≥ 0 must

hold.

In the case of multiple random variables, more concepts can be introduced. The joint
distribution p(x, y) describes the probability of observing x and y at the same time. Here
we can also marginalise out random variables to obtain the probability for single variables
p(x) =

∫
p(x, y)dy. The conditional likelihood p(x|y) describes the probability of observing

x if y is already known. It is defined as p(x|y) = p(x,y)
p(y) . A fundamental principle for

updating prior beliefs based on new observations is Bayes’ Theorem. It can be derived by
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applying the product rule twice:

p(y|x) = p(x|y)p(y)
p(x)

,

where

p(x) =

∫
p(x|y)p(y)dy.

After the basic probabilistic context is described, we briefly outline two important prob-
abilistic measures that are used throughout the thesis. The first one is the so-called
Kullback-Leibler (KL) divergence, defined as

DKL(P∥Q) =

∫ ∞

−∞
p(x) log

p(x)

q(x)
dx.

This is a measure of how different two probability distributions P and Q are from each
other, serving as a measure of the discrepancy between the distributions. In the context
of machine learning, it is often used to estimate how closely a learned distribution approx-
imates a target distribution. It has the important properties of being always non-negative
DKL(P∥Q) ≥ 0 and that DKL(P∥Q) = 0 if P and Q are the same distribution. Based on
this, we can define the mutual information (MI) I(X;Y ), which is a symmetric measure
for how much information one random variable X contains about the other Y . Formally,

I(X;Y ) = Ep(x,y)

[
log

p(x, y)

p(x)p(y)

]
= DKL(p(x, y)∥p(x)p(y)).

If two variables X,Y are independent, then I(X;Y ) = 0. Mutual information is a crucial
measure, as it enables us to quantify how much one variable reveals about another and how
dependent they are on each other. This can serve multiple purposes. By minimising this
measure, we can reduce redundancies between the random variables X and Y . This can
also serve as a measure of how much a variable X contributes to predicting some variable
Y . In the general setting, when the closed form of the marginal distributions p(x), p(y) or
that of the joint distribution p(x, y) is unknown, it is often infeasible to directly estimate
it accurately. Here, several sampling methods, such as non-parametric binning, kernel
density estimation, or K-NN entropy estimation, can be used [CHD+20]. However, these
methods are often unreliable and struggle with high-dimensional data [CHD+20]. We now
show a technique that is better suited for estimating MI and minimising it.

Upper and Lower Bounds on Mutual Information

The Contrastive Log-ratio Upper Bound (CLUB) [CHD+20] provides a tight differentiable
upper bound on the mutual information between two random variables X and Y. This
bound relies on both negative and positive samples, as well as a conditional distribution
p(y|x) for the considered variables. There exist several variations of this loss for several
cases: 1. If the conditional distribution p(y|x) is known; 2. If the conditional distribution
p(y|x) is unknown. In the first case, the upper bound can be estimated as

ICLUB(X;Y) := Ep(x,y)[log p(y|x)]− Ep(x)Ep(y)[log p(y|x)].

Here follows a short sketch of the proof that ICLUB(x;y) is an upper bound on mutual
information as described in [CHD+20], where more details are explained. It needs to be
shown that

ICLUB(X;Y)− I(X;Y) ≥ 0.
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By inserting the upper bound and reordering the terms, we get [CHD+20]

ICLUB(X;Y)− I(X;Y) = Ep(y)[log p(y)− Ep(x)[log p(y|x)]].

By Jensen’s inequality, the following holds as log is concave: log p(y) = log(Ep(x)[p(y|x)]) ≥
Ep(x)[log p(y|x)]], see [CHD+20]. Hence, log(Ep(x)[p(y|x)])−Ep(x)[log p(y|x)]] ≥ 0 and thus

ICLUB(X;Y)− I(x;y) ≥ 0.

This upper bound can now be estimated with the samples (xi, yi) with i ∈ N as

ÎCLUB =
1

N2

N∑
i=1

N∑
j=1

[log p(yi|xi)− log p(yj |xi)].

This upper bound takes the difference between the log-conditional distributions of positive
and negative pairs and is therefore contrastive. For unknown conditional distributions,
instead of using the true conditional distribution, we have to use a variational approach to
approximate p(y|x) by qθ(y|x), which is represented by a neural network. This network
learns to predict one variable from another and must be trained simultaneously. This is
done by maximising the log-likelihood

L(θ) = 1

N

N∑
i=1

log qθ(yi|xi).

Then the upper bound approximation with variational CLUB is defined as

ÎvCLUB =
1

N2

N∑
i=1

N∑
j=1

[log qθ(yi|xi)− log qθ(yj |xi)],

which can no longer guarantee that it is always an upper bound on mutual information,
but is a good approximation of it [CHD+20]. Since this bound is differentiable, we can
use it to minimise the mutual information between two variables x and y sampled from
some distribution pσ(x,y). The following needs to be done in each training step with the
sampled pairs (xi,yi) [CHD

+20]:

1. Compute ÎCLUB by computing Ui = log qθ(yi|xi)− 1
N

∑N
j=1 qθ(yj |xi) for each i ∈ N .

Then update pσ(x,y) by minimizing ÎCLUB = 1
N

∑N
i=1 Ui.

2. Maximize likelihood L(θ).

We can compute the upper bound without the minimisation objective by not updating
pσ(x,y). For minimising MI between both variables in the distribution pσ(x,y), the CLUB
approximation delivers more stable gradients than other methods [CHD+20].

Additionally, there are several methods to derive a lower bound on MI. A standard method
for estimating a lower bound on mutual information is Information Noise Contrastive
Estimation (InfoNCE) [CHD+20]. It uses a scoring function f(x,y) that compares the
contrastive embeddings of x and y [OLV18]

INCE := E

[
1

N

N∑
i=1

log
ef(xi,yi)

1
N

∑N
j=1 e

f(xi,yj)

]
.

With InfoNCE and CLUB, we now have a way to minimise mutual information between
variables and to approximate the range in which MI lies.
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Partial Information Decomposition

Mutual information can be used to investigate how much random variables reveal about
each other. In the multimodal case, this can be extended to include two or more variables,
which can be investigated in terms of their information content about a target variable,
thereby translating to the influence of variables on downstream task performance. For this,
we can refer to the Partial Information Decomposition (PID) framework [WB10], which
is used, for example, in neuroscience. Assume we are given two modalities as random
variables, M1 and M2, and want to predict a random variable T based on these. Then we
can quantify how much useful information M1 and M2 contain about T as I(T ;M1,M2).
Applying this partial information decomposition, we semantically get [WB10]

I(T ;M1,M2) = Unq(T ;M1) + Unq(T ;M2) + Rdn(T ;M1,M2) + Syn(T ;M1,M2),

which means that the contributions of both modalities can be decomposed into unique,
redundant and synergistic information contributions. The unique information is only
present in the respective modalities, redundant information exists in both modalities, and
synergistic information jointly complements each other. They can be computed in the fol-
lowing way. First, we need to compute estimates of I(T ;M1), I(T ;M2) and I(T ;M1,M2).
Using the framework from [WB10], which defines redundancy as the expected minimum
information that any modality provides 1, the contributions can be derived as:

Rdn(T ;M1,M2) =
∑
t

p(t)mini(I(T = t;Mi)) Definition by [WB10]

Unq(T ;M1) = I(T ;M1)− Rdn(T ;M1,M2) (3.1)

Unq(T ;M2) = I(T ;M2)− Rdn(T ;M1,M2) (3.2)

Syn(T ;M1,M2) = I(T ;M1,M2)−Unq(T ;M1)−Unq(T ;M2)− Rdn(T ;M1,M2)

However, for high-dimensional data M1,M2, T , this becomes more challenging as we can-
not directly estimate the mutual information, but instead need to approximate it using,
for example, trained neural network estimators. These can, however, also become inaccu-
rate for complex, high-dimensional data and compressing the data to a low-dimensional
embedding would be necessary, which could alter results. This makes the PID a good
theoretical framework, but it is often unsuited for real-life tasks involving complex data.
In the following sections, we lay the foundations for the framework, which we will propose
in chapter 4, that aims to estimate both unique and shared contributions. Our framework
utilises a more practical and heuristic deep learning approach, making it easier to apply
and yielding more practically usable contribution estimations.

3.2 Machine Learning Fundamentals

In recent decades, machine learning has established itself as an important tool for data
analysis in scientific applications, including physics data. From computer vision appli-
cations, including segmentation and scene understanding, to data clustering, time series

1There are other definitions for redundancy which can lead to different derivations for the appearing
terms.
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analysis, and deep generative models for generating data, it has many applications. Deep
neural networks have gained traction, with the introduction of more powerful architec-
tures, such as transformers with their attention mechanism, diffusion models, or varia-
tional autoencoders. With increasingly powerful GPUs, the large-scale training of large
models has become feasible. The general idea in machine learning is to learn patterns from
data. There are three main types of learning: supervised, unsupervised, and reinforcement
learning.

In the supervised case we are given a dataset {(x1, t1), ..., (xN , tN )} of input data xi and
output/target values ti and the goal is to learn a function f : X → T which minimizes
a loss function L(f(xi), ti) that measures the similarity of the predicted output with the
actual output for all data pairs. If the values in ti are continuous, this is referred to as
regression; if they are discrete, this is referred to as classification. In unsupervised learning,
we are only given input data points {x1, ...,xN}, and several common tasks are associated
with it, including clustering similar data, learning a compressed representation of the data,
or estimating the probability density of the underlying data. In this case, we can also train
models to generate data. A special case of unsupervised learning is self-supervised learning,
where auxiliary labels are generated from the input data points, which can be used for
specific tasks such as reconstructing masked images or learning a meaningful representation
of the data with contrastive learning. The third case is reinforcement learning, where an
agent interacts with its environment and learns a policy to maximise the rewards from the
environment.

This thesis focuses primarily on the unsupervised case and, to a lesser extent, on the
supervised case. For that, we have to recap some necessities. Assuming the supervised
case, our data points are often assumed to be generated by some underlying function f
with an input value xi and a corresponding target value ti where ti = f(xi)+ ϵ where ϵ is
noise. The goal is to learn this function as f(x, θ̂) such that θ̂ = argminθ

∑
i L(f(xi, θ), ti).

Here θ stands for the parametrisation of f which depends on the function and is, in the
case of neural networks, the weights. The loss function L(xi, ti) measures the similarity
or error between the predicted target value and the true target value. In regression, the
main task is to minimise the expected loss

E[L] =
∫ ∫

L(f(x, θ), t)p(x, t)dxdt. (3.3)

A commonly used measure to compute the difference between the predicted vector ti and
true target vector xi is the L2 loss: L(xi, ti) = ∥xi − ti∥22. Then the function can be
optimised by minimising the mean squared error (MSE) over all N samples:

L(θ) =
1

N

N∑
i=1

∥f(xi, θ)− ti∥22

For general regression problems, the function f has often the form f(xi,w) =
∑M−1

j=0 wjΦj(xi)

for one data sample xi ∈ RM and with the weight w ∈ RM and basis functions Φj . The
first entry is often set to 0, Φ0(xi) = 1, such that w0 is a bias term. The loss function is
then minimised by gradient descent, which reduces the loss value by iteratively following
the negative gradient in the parameter space. In deep learning, the function f(xi,w) is
replaced by a more complex function consisting of several nested layers in a multilayer
perceptron (MLP) structure. In an MLP, each node computes a value dependent on the
entire previous layer. The general structure is visualised in fig. 3.1.
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Figure 3.1: Visualisation of a Multilayer Perceptron (MLP) with one hidden layer.

The input vector xi is first processed by the next (hidden) layer as a product of the input
vector multiplied by a corresponding weight plus an additional bias. Then, a non-linear
activation function Φ is applied to improve the expressivity of the network, as otherwise,
the network could be reduced to a simple matrix-vector multiplication. The first layer is
computed as

hik(x) = Φ(
M−1∑
i=0

wkjxij).

The next layer is then computed similarly, but with the output of the previous layer, hi,
instead of xi. Multiple of these hidden layers can be concatenated before the last layer
computes output values f(xi, θ). This general form of neural networks can be used to
learn a function representing the relation from input xi to target output ti. It can also be
minimised by gradient descent. The backpropagation algorithm implements the gradient
descent method for neural networks. In current frameworks, the gradient descent method
is implemented efficiently as reverse mode automatic differentiation.

Convolutional Neural Networks

For structured data, such as images or spectra, using an inherent grid structure, a different
architecture than MLPs is more effective. In computer vision and machine learning, it is
desired to extract meaningful features from images and data. Early approaches applied
hand-engineered filters/convolutions to images to extract features such as edges and cor-
ners. Convolutional neural networks perform the same function but are learned directly
by the machine learning model.

Input

∗

Filter Output Feature Map

Figure 3.2: Visualisation of a convolution operation.

The convolution operation is visualised in fig. 3.2, where for an RGB input image with
three channels, a filter is applied to each corresponding patch and channel in the input
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image, and the results are added to create an output feature map I ∗F = I ′. As the filters
are reused across the entire image, this drastically reduces the parameters the model has
to learn. This operation can be utilised in a neural network and can be completed with
batch norm layers, pooling and non-linear activation functions. To extract more complex
patterns/features, several of these convolution layers are combined. Typical CNN models
reduce the spatial size with every layer while increasing the number of channels (channel
inflation). Another closely linked layer is the transposed convolution, which can increase
spatial size and is often applied in generative models. Convolutional layers also exist for
1-D, 2-D, or 3-D shaped data.

3.3 Generative Models

In this section, we describe how generative models, such as the Variational Autoencoder,
work, building up the ideas for it step by step. When we want to generate data items from
a data distribution, it means that we want to draw samples from the underlying real data
distribution. If the underlying data distribution is p(x), then we want to draw x ∼ p(x).
This probability distribution, however, is often unknown or intractable in closed form. To
still perform this inference task, there are two primary methods: Sampling methods and
Variational Inference.

Sampling methods rely on samples to estimate the target distribution and to estimate
statistical properties based on these samples. A popular sampling method is MCMC, which
produces a sequence of dependent samples using an iterative scheme with a Markov chain
whose stationary distribution is the target distribution. By drawing every n-th sample,
the samples become approximately independent. Sampling becomes more accurate with
a large number of samples, which can make the process computationally expensive.

In contrast, variational methods attempt to directly approximate the intractable posterior
distributions with a simpler distribution that can be optimised to be close to the actual
distribution. These simpler distributions, unlike the real distribution, are tractable to
optimise to approximate the real underlying distribution, while they can also introduce a
bias. Variational methods are often more efficient than sampling, but their effectiveness
depends on the task and must be derived. This is the approach used for VAEs.

3.3.1 Autoencoder

Consider we are given a data item x from which we want to extract important features
in a compressed format. This can be achieved through unsupervised learning, where an
encoder f(x) takes the input and outputs a lower-dimensional representation z = f(x).
Then, a decoder g(z) has the task of reconstructing the original data item x using the
compressed representation as input, where g(z) = x̂ ≈ x. This model can be trained by
minimising the mean square error with respect to the encoder and decoder parameters

L =
1

N

N∑
i=1

∥x− g(f(x))∥22.

This task has a bottleneck due to the compressed representation in the so-called latent
space. Since the latent space often has a far lower dimension than the original data item,
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the model must learn the most important features of the data, which are most informative
for reconstruction. Suppose the model learns to extract such features into the latent space
and is capable of reconstructing the original data. In that case, it is in principle possible to
generate new data items if it were possible to sample meaningful latent vectors. However,
as the latent space is not regularised, it has an irregular format from which we cannot
just draw latent values. Instead, a more advanced probabilistic model is needed, for which
latent values can be sampled to generate novel data.

3.3.2 Variational Autoencoder

The variational autoencoder [KW+13] utilises the structure of the autoencoder, which can
generate data points based on a latent vector, but extends it probabilistically. Sampling
from the latent manifold directly is not possible for autoencoders because the latent distri-
bution is unknown. If we could sample from the true underlying latent distribution pθ∗(z)
and then sample from the true conditional distribution pθ∗(x|z), we could generate novel
data points [Lei24]. For VAEs, we can choose pθ∗(z) to be a standard zero-mean, unit-
covariance Gaussian distribution, and pθ∗(x|z) can be represented as a neural network.
Then, this scenario corresponds to the task of maximising the likelihood [LP21]

pθ(x) =

∫
pθ(x|z)pθ(z)dz = Ez∼pθ(z)[pθ(x|z)].

Despite pθ(z) and pθ(x|z) being computable as a Gaussian and a neural network, com-
puting pθ(x) requires marginalising over all z, which is analytically intractable [Lei24].
Variational autoencoders address this dilemma by employing variational inference, which
involves deriving an evidence lower bound (ELBO). By maximising this ELBO, we get an-
other way to maximise the likelihood in a tractable form. For this, another neural network
qΦ(z|x) is introduced, which acts as an encoder and approximates the posterior pθ(z|x).
The encoder and decoder are probabilistic. They predict a Gaussian distribution by pre-
dicting mean µz|x and (co-) variance σz|x for the encoder and by predicting mean µx|z and
(co-) variance σx|z for the decoder, from which we can sample. Then the latent variable z
can be sampled as z|x ∼ N (x|µz|x, σ

2
z|xI) and the reconstructed data point x can be sam-

pled as x|z ∼ N (x|µx|z, σ
2
x|zI). The goal is now to maximize Ez∼qΦ(z|(x)[pθ(x|z)] instead

of Ez∼pθ(z)[pθ(x|z)]. We follow the steps shown in [Lei24]. To simplify calculations, the
log-likelihood is used:

log pθ(xi) = Ez∼qΦ(z|xi)[log pθ(xi)]

= Ez∼qΦ(z|xi)

[
log

pθ(xi|z)pθ(z)
pθ(z|xi)

]
= Ez∼qΦ(z|xi)

[
log

pθ(xi|z)pθ(z)qΦ(z|xi)

pθ(z|xi)qΦ(z|xi)

]
= Ez∼qΦ(z|xi) [log pθ(xi|z)]− Ez∼qΦ(z|xi)

[
log

qΦ(z|xi)

pθ(z)

]
+ Ez∼qΦ(z|xi)

[
log

qΦ(z|xi)

pθ(z|xi)

]

Here, the KL-divergence naturally appears. Hence, we get

log pθ(xi) = Ez∼qΦ(z|xi)[log pθ(xi|z)]−DKL(qΦ(z|xi)∥pθ(z)) +DKL(qΦ(z|xi)∥pθ(z|xi)).

(3.4)
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The first term is responsible for reconstructing the data. As the decoder predicts a Gaus-
sian distribution, the expectation value can be predicted as

Ez∼qΦ(z|xi) [log pθ(xi|z)] = Ez∼qΦ(z|xi)[logN (xi|µxi|z, σ
2
xi|zI)]

= −1

2

d∑
j=1

Ez∼qΦ(z|xi)

[
log(2πσ2

xi|z,j) +
(xi,j − µxi|z,j)

2

σ2
xi|z,j

]
.

In practice the covariance σx|z term is often dropped. Then the expectation value can

be approximately minimised by minimising the mean squared error 1
N

∑N
i=1 ∥xi−µxi|z∥22.

Since the z values are sampled, it normally wouldn’t be possible to do gradient descent
through the latent space to the encoder. However, we can utilise the reparameterization
trick [KW+13] to obtain differentiable samples. This is done by defining the random
variable z as

zi = µz|x,i + σz|x,iϵi

using ϵi ∼ N(0, 1). Then this becomes differentiable. The second term in eq. (3.4) can be
solved in a closed form as the prior is a standard Gaussian, and the encoder gives the other
distribution. The last term in eq. (3.4) is analytically intractable. Since DKL(P∥Q) ≥ 0,
the term can be neglected and we get a lower bound on log pΘ(x). Hence:

log pΘ(xi) ≥ Ez∼qΦ(z|xi)[log pθ(xi|z)]−DKL(qΦ(z|xi)∥pθ(z)) =: ELBO(xi, θ,Φ)

The first term is for reconstruction, and the second term conditions the encoder to learn
a latent space that is close to the prior, which is a standard Gaussian. In summary, the
optimisation objective is to maximise the log-likelihood by maximising the lower bound
[Lei24]

log pθ(xi) ≥ Ez∼qΦ(z|x)[ELBO(xi, θ,Φ)],

θ,Φ = argmax
θ,Φ

N∑
i=1

ELBO(xi, θ,Φ).

The optimisation thus faces a tradeoff of reconstruction performance and closeness of the
latent space to a standard Gaussian. Then the VAE learns a latent representation of
the data distribution mapping a data item x to a latent representation consisting of a
mean µz|x and the inherent uncertainty represented by the variance σ2

z|x. The encoder

essentially learns an approximate posterior distribution qΦ(z|x). This latent representation
captures the essential underlying factors of the data and can be seen as a compression of
the data. The mean µz|x can here be seen as a maximum a posteriori (MAP) estimate of
the approximate posterior distribution and is in practice often used as the deterministic,
most likely encoding of the input x in latent space, that is usable for downstream tasks
and as a representative embedding.

3.3.3 Disentangled Representation Learning

To investigate downstream task performance, it is necessary to extract a meaningful and
robust representation of the data on which downstream models can be applied. Disen-
tangled representation learning (DRL) is a paradigm for learning to separate the distinct,
independent, and informative generative factors of variation in the data [WCT+24]. There
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are several categories of models that can perform this task, including VAE-based methods.
As previously described, VAEs can be used to extract essential features of data. To ad-
just the amount of disentanglement between the latent features, the β−VAE extends the
normal VAE with a weighting factor β on the KL-divergence, which controls how much
the variables shall be disentangled [WCT+24]. This affects whether disentanglement is
favoured over reconstruction capabilities.

ELBO(xi, θ,Φ) = Ez∼qΦ(z|xi)[log pθ(xi|z)]− βDKL(qΦ(z|xi)∥pθ(z))

The β − TCVAE extends this even further by decomposing the KL-divergence into three
terms [WCT+24]:

DKL(qΦ(z|xi)∥pθ(z)) = DKL(qΦ(z,xi)∥qΦ(z)pθ(xi)) Mutual Information

+DKL(qΦ(z)∥
∏
j

qΦ(zj)) Total Correlation

+
∑
j

DKL(qΦ(zj)∥pθ(zj)) Dimension-wise KL-divergence

(3.5)

For each of the three terms, the model applies a penalty factor βi for i ∈ {1, 2, 3}, giv-
ing more control over what should be penalised [WCT+24]. This reveals that a higher
penalty βKL on the KL-divergence leads to an increased penalty on the mutual information
between the data x and the corresponding latent representation z, which harms recon-
struction performance and feature extraction capabilities as it reduces the dependence of
z on x while making z more independent. To retrieve an informative latent space, this is
not necessarily desired, as we want to capture as much information as possible. Thus, we
need to reduce βKL accordingly. This is the model that we will later use for the VAE due
to its increased control capabilities.
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Chapter 4

General Framework and Methods

Here, we propose a framework that enables the investigation of unique and shared contri-
butions of multimodal data to a prediction task. For this, one can examine the problem
from an abstract perspective. Without loss of generality, two modalities are assumed.
These modalities together contain information that is shared (redundant or synergistic)
between both modalities, and they both contain unique information that is not captured
by the other modality. When these modalities are combined and used together for a given
prediction task, all three distinct information subsets are implicitly jointly used for the
task. However, not all information captured by each of these subsets can be used for the
given task. This is visualised in fig. 4.1.

Task Information

Modality 1 Modality 2

Figure 4.1: Visualisation of information overlap of private and shared information of two
modalities and the information required for a task.

The diagram displays the information from both modalities, where blue represents the
unique information from modality 1, red represents the unique information from modality
2, and green represents the shared information. At the top, you can see all the information
that can be used for a given prediction task. The combined information from both modal-
ities potentially only partially contains useful information for the task. It depends on the
task and the modality how much overlap in information there is. The coloured regions
only partially intersect the task information, as the modalities can also contain informa-
tion that is not relevant to the task. Additionally, other information, not captured by the
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modalities, could also be used for the prediction task. When evaluating whether adding
more data modalities increases task performance, one must consider the relative contribu-
tions of each modality, broken down into its private and shared components. Specifically,
the unique contribution and the added synergistic information could influence the task
performance. To extract these disentangled representations of shared and private infor-
mation, we first need to explain the Disentangled Multimodal Variational Autoencoder,
which serves as a base model.

4.1 Disentangled Multimodal Variational Auto-encoder

The Disentangled Multimodal Variational Autoencoder (DMVAE) [LP21] extends the
Variational Autoencoder to a multimodal model. The goal is to obtain separate latent
spaces that contain features shared between multiple modalities and private features that
contain unique features of each modality. To do this, an unsupervised learning task is set
up with one en-/decoder for each modality. Every Encoder i has the task to predict latent
values zi that contain modality-specific private features zpi and inter-modality shared
features zsi . In this thesis, only two modalities are assumed, and the inclusion of more
modalities leads to more complicated shared features. This means that encoders 1 and 2
predict

qΦ1(z1 | x1) ∼ z1 = (zp1 , zs1), qΦ2(z2 | x2) ∼ z2 = (zp2 , zs2),

where the models should learn to predict

zs1 = zs2 = zs.

The shared features are then combined using a product of experts (PoE). PoE is a method
for combining probability distributions from multiple experts into a single joint probability
distribution that captures more complex dependencies. It is constructed as a product of
all expert distributions pi(z) normalised by some partition function. For N experts, it is
defined as [LP21]

q(zs|x1, ...,xN ) ∝ p(zs)
N∏
i=1

q(zs|xi).

Each expert q(zs|xi) may encode different constraints about the latent variable zs. By
multiplying the experts, the resulting PoE distribution assigns high probability to those
zs values that all experts support. This is especially useful in multimodal learning as
different views of multiple modalities on the latent variable zs provide a sharper, more
constrained posterior. For the prior, a Gaussian is assumed p(zs) = N (zs|0, I) and the
experts are also Gaussian q(zs|xi) = N (zs|µi,Ci) with mean µi and covariance Ci [LP21].
Hence the resulting distribution of the PoE in closed form is q(zs|x1, ...,xN ) = N (zs|µ,C)
[LP21] with

C−1 =
N∑
i=1

C−1
i , µ = C

N∑
i=1

C−1
i µi.
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The decoders have the task of reconstructing their respective modality based on samples
from the shared latent space and their corresponding private latent space. This design has
the advantage that the shared latent variable zs can also be inferred when just one modality
xi is given q(zs|xi), enabling cross-reconstruction capabilities together with samples from
a normal distribution resembling the unknown private latent vector [LP21]. Assuming the
two-modality case, the learning objective can now be defined similarly to that of VAEs,
consisting of multiple reconstruction and KL-divergence terms:

ELBODMVAE :=
∑

i∈{1,2}

Exi∼p(xi)

[
λiEqΦ(zpi |xi),qΦ(zs|x1,x2)[log pθ(xi|zpi , zs)]

− βiKL(qΦ(zpi |xi)qΦ(zs|x1,x2)∥p(zpi)p(zs))

+
∑

j∈{1,2}

(
λiEqΦ(zpi |xi),qΦ(zs|xj)[log pθ(xi|zpi , zs)]

− βiKL(qΦ(zpi |xi)qΦ(zs|xj)∥p(zpi)p(zsi))

)]
(4.1)

This objective contains six terms: For each combination of latent spaces that the de-
coder can receive, there is a reconstruction and a KL-divergence term, such that each
combination resembles a normal distribution from which we can reconstruct respective
modalities. For each modality, there are three combinations which are (zpi , zsi) for direct
reconstruction, (zpi , zs) for joint reconstruction and (zpi , zsj ) for cross-reconstruction for
each combination of modalities i, j ∈ {1, 2} and i ̸= j. We now describe their correspond-
ing reconstruction and KL-divergence terms:

1. The first terms are for the reconstruction using the combined shared representation
from the PoE and the respective private representation from the encoder i. These
are then used by the respective decoder:

EqΦ(zpi |xi),qΦ(zs|x1,x2)[log pθ(xi|zpi , zs)] and KL(qΦ(zpi |xi)qΦ(zs|x1,x2)∥p(zpi)p(zs))

2. Then there are terms corresponding to direct reconstruction using the private and
shared latent values inferred from the corresponding encoder i which are utilised by
the corresponding decoder:

EqΦ(zpi |xi),qΦ(zs|xi)[log pθ(xi|zpi , zs)] and KL(qΦ(zpi |xi)qΦ(zs|xi)∥p(zpi)p(zsi))

3. At last, there are terms to enable cross-reconstruction through the use of the shared
representation inferred from modality j with the private representation inferred from
modality i, which are used by the corresponding decoder i. In practice the cross-
reconstruction can be achieved by sampling zj ∼ p(zpj ) from a normal distribution:

EqΦ(zpi |xi),qΦ(zs|xj)[log pθ(xi|zpi , zs)] and KL(qΦ(zpi |xi)qΦ(zs|xj)∥p(zpi)p(zsi))

By training the DMVAE on this objective, the model is encouraged to extract shared fea-
tures, as it needs to utilise them for improved (cross-) reconstruction performance using
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either the shared representation inferred by the corresponding modality, the other modal-
ity, or the joint PoE representation, which by design only captures shared information.
Everything that cannot be captured in the shared representation should be put into the
private latent spaces. Then, the model learns unique features in the private latent spaces,
redundant features in the shared latent space, and synergistic information is only indi-
rectly considered through the PoE, which could extract synergistic information into the
shared latent space; however, this is not enforced.

4.2 DMVAE with CLUB

Based on the DMVAE and CLUB, we propose a framework for evaluating multimodal
data. The DMVAE serves as a basis, with corresponding encoders and decoders respon-
sible for feature extraction and reconstruction for each modality. The DMVAE already
encourages that encoders compute private and shared features that are disentangled from
one another. However, it does not directly ensure that the private and shared latent
spaces contain no mutual information and no semantic dependencies. Consequently, se-
mantic dependencies, redundancies, or leakage between latent spaces can occur, which is
undesirable for evaluating contributions. Our goal is to minimise the mutual information
between the shared and private latent spaces I(zs; zp1) and I(zs; zp2)

1. To address this, we
use a differentiable approximation of mutual information, employing variational CLUB,
because the mentioned conditional distributions from shared to private latent spaces are
unknown. This CLUB loss is incorporated between the shared and private latent spaces.
The architecture is visualised in fig. 4.2.

Modality 1

Modality 2

Modality 1 Encoder

Modality 2 Encoder

Private 1
µ & σ zprivate1

Shared 1
µ & σ

Shared 2
µ & σ

Private 2
µ & σ zprivate2

Shared PoE
µ & σ zshared

Modality 1 Decoder

Modality 2 Decoder

Reconstructed
Modality 1

Reconstructed
Modality 2

C
L
U
B

C
L
U
B

Figure 4.2: Architecture of the Disentangled Multimodal Variational Autoencoder (DM-
VAE) with added CLUB loss.

In doing so, we ensure that the mutual information between the shared and private la-
tent spaces is minimised, thereby maintaining a clear separation between the shared and
private information. The private latent spaces are assumed to be independent by con-
struction, as they do not interact with each other. Hence, it is expected that the mutual

1We assume that the shared and unique information can be disentangled with as little MI as possible,
although this can sometimes be challenging in practice, when there are causal relations between them,
which may lead shared features to contain unintuitive information.
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information between the private latent spaces is by default very low, which is why we do
not use an extra CLUB loss between the private latent spaces. Furthermore, suppose any
mutual information exists between private latent spaces. In that case, the model should
naturally incorporate it into the shared latent space, thereby directly reducing the mutual
information between the private latent spaces. Our framework now allows us to study the
shared information across multiple data modalities and the information that is unique to
each modality. Note that this idea of removing redundant information from the feature
representation of a modality to obtain a unique representation of the modality is similar
to that of PID, as seen in eq. (3.1) and eq. (3.2), but not in relation to a specific target
variable here. Based on eq. (4.1), the learning objective is then to minimise the following
loss, with λCLUB for weighting the influence of CLUB:

−ELBODMVAE + λCLUB ÎvCLUB(zs; p1) + λCLUB ÎvCLUB(zs; p2)

This learning objective then has the three main components: total reconstruction loss
(Rtotal,i) that contains all three reconstruction terms for modality i, total KL-divergence
(KLtotal,i) that contains all three KL terms for modality i and the corresponding CLUB
loss in the latent space:

2∑
i=1

λiRtotal,i + βKLKLtotal,i + λCLUB ÎvCLUB(zs; pi)

4.3 Downstream task

This DMVAE with CLUB loss framework is now capable of strictly disentangling modality-
specific and shared features, which can be utilised for downstream tasks. When applying
a downstream model to all latent spaces (mean values), we can evaluate the performance
of the multimodal data on some downstream task. We can now directly investigate the
influence of each latent space by training a downstream model on all non-empty combina-
tions of latent spaces Z = {Zp1, Zp2, Zs}, evaluating each element in the set C = P(Z)\∅.
This subset-based method offers multiple ways for evaluating downstream contribu-
tions. By examining the performance drop when excluding one latent space compared to
the entire latent space, it can be observed how much this latent space contributed to the
task and how well it complemented the other latent spaces. Additionally, observing the
performance of single latent spaces reveals their direct performance, without synergistic
effects between the different latent spaces on the downstream task.

In addition to this method, we now describe another SHAP-based method that also
aims to estimate contributions while potentially saving compute, as we only need to train
the downstream model on all latent spaces once 2.

Task Contribution Estimation using SHAP

SHapley Additive exPlanation (SHAP) [LL17] is a method targeting the explainability of
machine learning model predictions. It quantifies the contribution of each input feature

2The subset based method is applicable to more general downstream tasks that can also include tasks like
reconstruction, while the SHAP based method can only be applied to predictions about single parameters.
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to the model’s output prediction. Each feature value can be either positive, indicating a
positive impact on a prediction, or negative, indicating a negative impact on a prediction.
The SHAP value is a local method for explaining the feature contributions of a single input
x to model predictions. For each feature i the SHAP value can be computed as [ICT23]

Φi(x) =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[fx(S ∪ {i})− fx(S)].

Here F is the set of all features and fx(S) is the prediction of a regression model that is
only evaluated on the input features S while fx(S ∪ {i}) is the prediction of a regression
model evaluated on the input features S∪{i} [LL17] [ICT23]. By computing the difference
between these two regression models for all subsets of input features and weighting the
terms in a way that each difference makes a fair contribution, we can calculate SHAP values
for each feature that comprehensively represent its contribution to the output. In practice,
the effect of the absence of features on the regression model is estimated, for example, over
samples [LL17]. This can now be applied to a downstream task in our framework, where
we can measure the contribution of each latent variable to the downstream prediction.
This can now be used to estimate contributions of each latent space in the following way.
SHAP has the property of being an additive feature attribution method to the original
prediction model f with an explanation model g that approximates f

g(z′) = Φ0 +
M∑
j=1

Φjz
′
j ,

which essentially means that the sum of the appearing SHAP contributions plus a baseline
can explain the model’s predictions. Whether a simplified input feature j appears and has
a contribution is indicated by the boolean variable zj . For more details, we refer to [LL17].
This sum can be decomposed into three sums corresponding to the three latent spaces,
private 1, private 2 and shared, where each sum then approximates the contribution of
the corresponding latent space. By taking the absolute values of each SHAP value and
then summing them, we can quantify the absolute contribution of each latent space to
the prediction. We take the absolute values as we are concerned only with the magnitude
of its influence, regardless of whether the features positively or negatively impact the
prediction. Assuming three latent sizes of size P1, P2, S and the corresponding SHAP

values Φ
(i)
p1,j ,Φ

(i)
p2,j ,Φ

(i)
s,j for sample i and feature j, we compute the latent spaces’ absolute

contributions over the entire dataset of size N by

Φp1 =

N∑
i=1

P1∑
j=1

|Φ(i)
p1,j |, Φp2 =

N∑
i=1

P2∑
j=1

|Φ(i)
p2,j |, Φs =

N∑
i=1

S∑
j=1

|Φ(i)
s,j |,

and then we can compute their relative contribution by

Cp1 =
Φp1

Φp1 +Φp2 +Φs
, Cp2 =

Φp2

Φp1 +Φp2 +Φs
, Cs =

Φs

Φp1 +Φp2 +Φs
.

This approach is valid because the private and shared representations have by construction
minimal dependencies. Recall that SHAP is a local explanation method for single data
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inputs, and by computing the SHAP contribution over the entire dataset, we assume that
this approximates the global contributions of each latent variable. This assumption may
not always hold, as SHAP does not guarantee that it generalises over the entire dataset.
However, since we use a simple downstream model, we assume that contributions can be
computed on the whole dataset.

Note that the SHAP-based method estimates contributions based on performance drops
when leaving out one feature for all combinations of latent values as input for a regression
model. Meanwhile, our first approach can only demonstrate a performance drop when
entire latent spaces are excluded. Hence, both methods could differ in their contribution
estimation, which should be compensated for by the fact that the latent spaces have
minimal MI, reducing synergistic effects between individual values from different latent
spaces.
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Chapter 5

Experiments and Evaluation

This chapter describes the experiments designed to study the impact of multimodal data
on downstream tasks for physics data. We describe the experimental setup, the motivation
behind it and evaluate the results of the experiments using several metrics.

These experiments study the proposed framework and investigate the impact of including
CLUB loss on the model’s performance, as well as investigate physics data. Using im-
ages and spectra, we aim to examine the amount of information these modalities contain
about each other using their cross-reconstruction performance and the unique and shared
information they provide about underlying physical properties. To achieve this, we first
need to identify and fix suitable hyperparameters for the KL-divergence weight and the
CLUB loss weight, and then determine an appropriate learning rate schedule for training.
We also need to determine suitable latent sizes for private and shared features that align
with the modalities. This also helps to study the impact of the CLUB loss. We also
directly compare DMVAEs with CLUB to DMVAEs without CLUB to see the effect of
the CLUB loss, and compare them to VAEs on single-modal data. We also evaluate the
structure of the latent space as well as the mutual information between latent spaces by
computing lower and upper bounds. We examine where exactly relevant information for
the downstream tasks is stored.

The experiments are structured as follows: We first conduct five experiments on galaxy
image and spectral data from the Multimodal Universe dataset [AAB+24] to investigate
their usability for predicting physical properties. Here, we also investigate how the inclu-
sion of a physical model can predict interpretable parameters and how this impacts the
performance of downstream tasks. In the sixth experiment, we investigate hyperspectral
data from the HyPlant FLUO [SAC+19] dataset, which is remote sensing data recorded by
airborne sensors. We decompose this data into image and spectrum to apply our frame-
work to with hyperspectral reconstruction as a downstream task. This helps to determine
whether the structural RGB image or spectrum contains more underlying information
about the hyperspectral data. We first introduce the evaluation metrics used and present
the primary dataset we aim to investigate, along with some background and details on the
training and architectures used, before proceeding to the experiments.
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5.1 Evaluation Tools and Metrics

Several evaluation tools are required to evaluate the model’s performance. To study the
reconstruction performance of the modalities, assess downstream task performance, and
investigate latent space properties, several evaluation metrics are necessary to test the
performance of different parameter configurations. When minimising an optimisation
function that consists of several components, such as MSE for reconstruction performance,
KL-divergence, and CLUB, we can directly use these components to evaluate the model’s
performance and latent properties. Still, more metrics are needed to assess the model’s
performance under various aspects. We use three metrics for evaluating the reconstruction
performance compared to the original data item: Mean Squared Error (MSE), Structural
Similarity Index (SSIM) and the Fréchet Inception Distance (FID). Note that there are
also metrics specifically designed to evaluate the generative performance of galaxy images.
These can be found in [FIL+13] but are not further studied here. To evaluate the structure
and downstream-task performance of the latent space, we use t-SNE and R2.

Mean Squared Error (MSE)

The MSE metric is a classic method that compares the reconstructed data point by point
with the original data item. For an image x and its reconstruction x′ this is defined as
[TCERP+23]

MSE =
1

HWC

C∑
c=1

H∑
i=1

W∑
j=1

(xc,i,j − x′c,i,j)
2,

averaged across all samples. In the optimal case where the model perfectly reconstructs
the data item, this becomes 0.

Structural Similarity Index (SSIM)

Instead of relying on per-pixel accuracy, SSIM utilises local perceptual features to compare
the similarity between two images. This metric is specifically designed for images and
better reflects how humans perceive them. Specifically, it compares for each image region
luminance, corresponding to the mean intensity (µx, µy), contrast, corresponding to the
standard deviation (σx, σy) of the intensity, and structure, corresponding to the normalized
covariance σxy between the two images x and y. It is defined as [TCERP+23]

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
.

Here, C1 = (K1L)
2 and C2 = (K2L)

2 are just stabilising constants where L is the dynamic
value range and K is some small constant. This metric is computed for all patches of the
image and then averaged across them. It returns values between -1 and 1, but typically
only between 0 and 1, where 1 indicates perfect similarity and 0 indicates no similarity.
This can help estimate whether the structure of the images is similar. This metric is helpful
in generative tasks, as small changes in brightness or global intensity are not penalised
too much by the metric, better aligning with VAEs, as it is expected that they return
non-pixel-perfect reconstructions but a distribution of similar images.
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Fréchet Inception Distance (FID)

The FID metric is used for reviewing the reconstruction performance of the entire recon-
structed image distribution compared to the original image distribution. It compares deep
perceptual feature distributions. For the original and the reconstructed image, inception
networks are applied, and features at some specific layer are extracted [TCERP+23]

x′ = Inception(x), x̂′ = Inception(x̂).

Here x is the original image and x̂ is the reconstructed image. Assuming the features
follow a multivariate Gaussian distribution with the means µx, µx̂ and covariances Σx,
Σx̂ of the respective features from the original and reconstructed data, then, FID is defined
as [TCERP+23]

FID(x′, x̂′) = ||µx − µx̂||2 + Tr(Σx +Σx̂ − 2(ΣxΣx̂)
1/2),

providing a metric that evaluates the similarity of the entire distribution of reconstructed
images to the original ones globally, while also capturing better how humans perceive them
[TCERP+23].

Coefficient of Determination (R2)

A standard metric for evaluating the performance of a regression model is MSE. Addi-
tionally, another popular metric is the coefficient of determination, R2. This metric can
describe how well the model captures the variation of the target variable [TCERP+23]. It
is defined as

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2
,

with the mean ȳ = 1
N

∑N
i=1 yi which is used to comupte the total variance of y and ŷi

representing the reconstructed data yi. If the value is 1, then the model is perfect, and if
it is 0, then it is as good as a mean predictor [TCERP+23].

t-Distributed Stochastic Neighbour Embedding (t-SNE)

The t-distributed stochastic neighbour embedding (t-SNE) can be used to reduce high-
dimensional datapoints to a two or three-dimensional datapoint representation for illustra-
tion purposes [MH08]. It serves as a probabilistic, non-linear dimension reduction method
that maps similar points close together and dissimilar points far apart from each other.
It does this by computing the local similarity for all pairs of data points. Then it as-
signs points to the low-dimensional space while measuring their similarity using a specific
measure. Then, the low-dimensional points are iteratively updated to minimise the differ-
ence between the similarity distributions in the low- and high-dimensional spaces, pushing
similar points together and dissimilar points away from one another [MH08].
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5.2 Datasets: Multimodal Universe

To evaluate this model, suitable physics datasets are necessary that provide multimodal
data combined with an appropriate property prediction downstream task. Astronomi-
cal data can provide vast amounts of imaging, spectral, hyperspectral, time-series and
tabular multimodal data. Specifically, imaging and spectral data can describe galaxies
from multiple perspectives, containing information about their physical properties. The
physical properties can be used as a downstream prediction task as they reveal how much
information modalities contain about such underlying properties. Additionally, we want
to investigate how much information is encoded in one modality about the other modality
and which modality contains more usable information for the downstream task. For that,
we can apply the proposed framework to study where exactly the useful information is
encoded.

For these reasons, we chose the Multimodal Universe dataset (MMU) [AAB+24]. This
is a large-scale, multimodal astronomical dataset that is specifically designed for machine
learning tasks that can leverage such data. MMU includes the previously described modal-
ities. The data measurements are taken using ground-based and space-based telescopes
in various surveys, which can be cross-matched using built-in functionalities. We will now
discuss each modality in detail:

1. MMU contains galaxy image data from multiple surveys, including Legacy Surveys
DR10, Legacy Surveys North, HSC or JWST. We use images from the Hyper Suprime-
Cam Subaru Strategic Program (HSC) because of its high-quality 160 × 160 images
[AAB+24]. Images are captured in multiple channels, where each channel corresponds
to a broad wavelength range. These channels are defined by the photometric system,
which assigns a letter to each passband of wavelengths corresponding to its respective
filters. The HSC program captured images in the g, r, i, z, and y channels, which
correspond to the optical range visible to the human eye and the infrared range. The
respective transmission rates of the filters used, which correspond to different wave-
length intervals, are shown in more detail in Appendix fig. A.2. Unlike normal images,
astronomical images have a very high dynamic range, meaning that there is a large
span of multiple magnitudes between the brightest and dimmest signal sources in the
image [AAB+24]. Additionally, the images are often noisy due to the sensors’ high sen-
sitivity, and depending on the telescope, there are multiple potential sources of noise
[AAB+24]. These can include light pollution from Earth’s atmosphere, noise intro-
duced by the sensor due to imperfections or readout noise, sudden high-energy photons
striking the sensor, and statistical variations in brightness and noise from long expo-
sures, which occur due to the low number of photons reaching the sensor. The resulting
image from the sensor can be described in the following form when relating it to the
true underlying data [AAB+24]:

I = S ∗Π+ n (5.1)

I: Captured signal

S: Intrinsic source emission (true original signal)

∗: Convolution operator

Π: Instrumental response/Point Spread function (PSF)
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n: Measurement noise

Due to the high dynamic range, the data cannot be visualised well in its original form.
Instead, we need to compress the data in a way that both bright and dim objects
are visible. We need a way to map the data to RGB images. For this, we use an
algorithm by Lupton which compresses the range by applying an arcsinh function such
that outliers do not disturb the image [LBF+04]. As the HSC study contains g, r, i,
z, and y channels, we need to drop some channels and retain only three channels. For
representing these channels in a plausible way to RGB, we use g, r and z and map
the longest wavelength to the longest one z → r, the intermediate wavelength to the
intermediate one r → g and the shortest wavelength to the shortest one g → b to make
it look as plausible as possible since some of the wavelengths are not visible to the
human eye. The algorithm also depends on two parameters: stretch determines the
dynamic range, and Q determines the smoothness of the transition. For this algorithm,
we inspect different combinations visually fig. 5.1.

Q = 4 Q = 8 Q = 12

stretch = 0.3

stretch = 0.5

stretch = 0.7

Figure 5.1: Galaxy images processed using the Lupton algorithm on g, r, z channels.

To minimise the number of parameters to optimise, we fix these values directly to
stretch = 0.5 andQ = 8, which are close to the default values and provide a compromise
between low noise, high dynamic range, and visible structures.

2. Spectra represent the distribution of wavelengths in the light emitted by galaxies that
are captured by the telescope. It is captured similarly to an image in a telescope, but
instead of using a camera, it uses a spectrograph to analyse the signal. This results
in a 1-D signal for which a similar relation of true signal to observed signal holds
as in eq. (5.1)(see [AAB+24] for more details). We use the spectra from the Dark
Energy Spectroscopic Instrument (DESI), as they can be directly cross-matched with
the physical property dataset (PROVABGS) [AAB+24].

3. Hyperspectral data can be represented as a three-dimensional data cube, combining
spatial and spectral information: Two dimensions represent the spatial structure, and
one dimension encodes the intensity for specific wavelengths. Compared to (RGB)
images, it contains more spectral bands. Images can therefore be seen as a special case
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obtained by averaging over spectral intervals, while spectra can be seen as a special
case obtained by averaging over the spatial domain. One such dataset for galaxies is
MaNGA [AAB+24].

4. Time-series data captures the brightness of objects over time. This is particularly
relevant for objects like supernovae, which vary in brightness over time, providing
valuable insights [AAB+24].

5. The last main modality captured in the dataset is tabular data. This can include
various types of data, such as galaxy morphology and physical property data about
galaxies. We use the PRObabilistic Value-Added Bright Galaxy Survey (PROVABGS)
dataset, which inferred the physical property data from DESI spectra and contains
galaxy properties such as [AAB+24]

(a) Stellar mass log(M∗): Total mass of all stars in solar units, where one stellar unit
represents the sun for comparison.

(b) Average star formation rate avgSFR: Average rate at which stars are formed in
a galaxy (we always apply log to compress the range).

(c) Specific star formation rate sSFR: Rate at which stars are formed in a galaxy,
normalised by stellar mass (log avgSFR− logZMW ).

(d) Metallicity ZMW Abundance of elements heavier than helium, weighted by galaxy
mass (we always apply log to compress the range).

(e) Redshift ZHP : How much the light spectrum has been shifted towards longer
wavelengths, helpful for analysing the distance to a galaxy.

(f) Age tage,MW : Average stellar age, weighted by galaxy stellar mass.

We will study the image and spectrum modality combined with the physical properties. To
use this as a single dataset with multiple modalities, we need to cross-match corresponding
data items from multiple observational studies with one another. This is handled directly
by the MMU dataset. Each data item contains the coordinates of right ascension and
declination, which identify a point on the celestial sphere. This celestial sphere, as shown
in fig. A.1 for reference, is an idealised infinitely large sphere centred on Earth, commonly
used to project astronomical objects onto it for mapping their positions. We cross-match
all elements that appear within a distance of 1 arcsecond of each other.

We utilise a multimodal dataset comprising the HSC, DESI, and PROVABGS datasets.
After cross-matching, a dataset of size 8,503 remains, which we split into train, validation,
and test datasets at ratios of 70%, 15%, and 15%, respectively. Due to the relatively
small dataset size, it is reasonable to use CNNs instead of transformer-based models,
which would require more data for training. For all subsequent experiments, training is
conducted for 50 epochs, with a batch size of 256.

5.2.1 Physics background

The following is a brief chapter on the physics background of galaxies. Galaxies are
collections of stars, gas, dust, dark matter, and often supermassive black holes, held
together by their gravity. They are a complex system with complex dynamics. Galaxies
originally formed due to matter density fluctuations, which collapsed, clustered and merged
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into galaxies under the pull of dark matter halos [MVdBW10]. Before galaxies fully
assembled, the very first generation of massive stars formed. Within galaxies, new stars
form in gas clouds that collapse under the influence of gravity. Then, depending on their
mass, they undergo multiple phases of nuclear fusion, where lighter element nuclei are
fused into heavier atoms (up to iron), releasing energy radiated as photons. Depending on
its evolutionary phase and the dominant fusion processes, a star produces different energy
outputs and emits photons with different spectral distributions. Typical bright galaxies
have around 1010 stars [MVdBW10]. These are statistically distributed throughout the
galaxy, depending on the type of galaxy, which can appear in various forms and shapes
(morphologies) when observed from a distance. Many other processes in galaxies also
produce or affect photons. Gas clouds can be ionised by high-energy photons or collisions
of particles and can then re-emit this energy, when combining with free electrons, in
characteristic wavelengths. During this, electrons are excited to a higher energy level by an
incoming photon and afterwards return to a lower state while emitting energy in the form of
a photon [MVdBW10]. For example, for hydrogen gas, a characteristic wavelength is that
of the Hα emission line. Atoms in gas clouds or stars also absorb specific wavelengths,
which are then not visible in the spectrum; this can be used to analyse the apparent
elements. Dust can also scatter ultraviolet and visible light, which re-radiate in infrared
wavelengths. Other processes that can produce radiation are supermassive black holes in
the centre of galaxies and supernovae, which emit a characteristic spectrum [MVdBW10].

Since the objects inside the galaxy move in different directions, one must also consider the
Doppler effect, which describes the change in wavelength that occurs when the source of a
signal is moving relative to the observer. If the source moves away from the observer, the
wavelength becomes longer, and if the source moves towards the observer, the wavelength
becomes shorter. This means that this effect widens the galaxy’s spectrum due to the
different velocities of objects inside the galaxy. Additionally, the galaxies are moving
away from Earth, introducing a redshift z of their spectra, which is generally defined as

z =
λobserved − λemitted

λemitted
,

where λ resembles the wavelengths. If the redshift is given, it can be used to reconstruct
the original spectrum using

λemitted =
λobserved

z + 1
. (5.2)

This is also referred to as the rest-frame [MVdBW10]. In general, the relativistic Doppler
effect is given by

λobserved

λemitted
=

√
1 + v/c

1− v/c
,

where v is the relative speed difference between source and observer and c is the speed
of light. For small v ≪ c, z can be approximated through a first-order Taylor expansion
by z ≈ v/c. The redshift captures how much the spectrum of a galaxy is shifted to
longer/redder wavelengths when the galaxy is moving away from us. It is essential to note
that it is not the galaxy itself that is moving away, but rather the space between galaxies
that is expanding. Through the expansion of the universe, galaxies that are further away
from Earth are observed with a higher redshift. This connection is captured by Hubble’s
law for galaxies (v ≪ c) [MVdBW10]

v = H0d with H(t) =
˙a(t)

a(t)
,
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where v is the speed of the galaxy moving away, H0 is the current time Hubble constant,
and d is the distance to the galaxy. For more distant galaxies, one must take into account
the scale factor of the universe a(t), depending on the time when the signal was emitted
compared to the scale factor at the time the signal was received. The scale factors a(t)
can be computed using the Friedmann–Lemâıtre equations.

1 + z =
a(tobserved)

a(temitted)

All these factors influence the light emitted by a galaxy. They can therefore affect the
image and spectrum captured by the telescope, which can be used to analyse its inner
processes and properties.

5.2.2 Models’ Architectures

For images and spectra from this dataset, we require suitable encoder/decoder architec-
tures that can extract useful information and reconstruct each modality. These can then
be used in VAEs, DMVAEs, and regression models as well. In the Appendix, we present
the detailed architectures of the encoder/decoder pairs for images (see section A.1) and
for spectra (see section A.1).

5.2.3 Downstream task: Physical property prediction

Based on the latent representations of the VAEs and DMVAEs, we utilise physical property
prediction of galaxies as a downstream task. These include log(M∗), avgSFR, sSFR,
ZMW , ZHP and tage,MW which were previously described. For this, we use a simple MLP,
as described in [PLG+24], to assess the informativeness of the latent spaces. The exact
architecture is shown in section A.1.

5.2.4 Data Preprocessing

Before the data is used for the experiments, several preprocessing steps are done to improve
training performance and reduce overfitting. These steps differ slightly for images and
spectra. For images:

1. The high dynamic range multichannel (g, r, i, z, y) images are reduced to three chan-
nels and mapped to RGB (z, r, g) and compressed to a more human-readable image
using Lupton’s algorithm [LBF+04] and rescaled to 128 × 128. The input range is
then reduced from [0, 255] to [0, 1].

2. The standard deviation is computed channel-wise, and the image is normalised to
x′ = x

σ . The mean is ignored, allowing the ReLU output function to fit the normalised
data.

3. The images are augmented by random horizontal and vertical flips.

For spectra
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1. Padding values are removed.

2. The flux is resampled on 4000 logarithmically placed wavelength positions between
3800 and 8400 as in [ICT23].

3. The standard deviation and mean are computed channel-wise, and the spectrum is
normalised to x′ = x−µ

σ .

The preprocessing of the spectra is done similarly to [ICT23]. The reason for the logarith-
mic resampling of the wavelength is that, due to the Doppler shift, the velocity behaves
additively in log-space. When observing some wavelength in log-space, we get

log(λobserved) = log(λemitted(1 + z)) = log(λemitted) + log(1 + z).

Hence, we get the difference between the emitted and observed wavelength

∆ log λ = log λobserved − log λemitted = log(1 + z) ≈ v/c.

This means that the Doppler effect introduces an additive term in log-space, which depends
linearly on the velocity of the galaxy. This should help simplify the learning task, as the
features maintain their relative positions in log wavelength space, with only an additional
velocity-dependent term. Additionally, one could use eq. (5.2) to normalise the spectrum
to the rest-frame such that wavelengths are directly comparable. However, this would
presuppose that the redshift is given. We do not assume this here, as we want to predict
the redshift and leave this step out.

5.2.5 Training details

The loss function consists primarily of three components: Reconstruction, KL-divergence,
and CLUB losses. These components need to be weighted appropriately for a good com-
promise. Here, we first describe and adjust the weighting factors of the reconstruction
terms λ1 and λ2, while the KL and CLUB weights are determined through experiments.

The simplest method would be to set the weights for the reconstruction terms to both 1.
Here, the weights for both modalities, λ1 and λ2, are determined dynamically using the
validation dataset. The idea behind this is the following: We aim for the reconstruction
of both modalities to have a comparable influence on the latent space. This could help
best extract the shared and private features, as otherwise, one modality might have a
disproportionately large impact on the learned latent space. This could make it harder
for the model to learn shared features between both modalities. Assume that the model
should learn two modalities, but one modality inherently has a much lower training loss.
Then the gradient of the loss is dominated by one modality making it potentially more
difficult to to learn shared features 1. By reweighing the loss of both modalities to be of
similar magnitude, the model can potentially learn latent features better. The weights
λ1, λ2 are determined as follows:

λ1 = 2
a

a+ 1
, λ2 = 2

1

a+ 1
,

1In our case, the model quickly learned that it could achieve a low training loss for the galaxy images
by simply reconstructing black images, although it had not yet learned anything about the galaxies’
appearances at that point, whereas the loss for the spectra was still quite high.
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where

a =
Rtotal,2

Rtotal,1 +Rtotal,2 + ϵ

and Rtotal,i represents the total reconstruction loss including all three reconstruction losses
regarding the corresponding modality and a is clipped between (10−3, 103), resulting in
λ1 + λ2 ≈ 2. This process is repeated every two epochs, automatically balancing both
modalities.

For the CLUB loss, we only train the neural network to predict the conditional distribution
between latent spaces in the first five epochs, and only afterwards include CLUB in the
loss. This ensures that only a useful, relatively accurate CLUB loss is used during training,
thereby reducing the noise introduced by the CLUB loss.

5.3 Experiments

We now give an overview of the experiments. In the first five experiments, we conduct ex-
periments on galaxy image, referred to as modality 1, and spectral, referred to as modality
2, modalities, performing them on both multimodal data using the DMVAE (with CLUB
loss) and on single-modal data using VAEs, and in the sixth experiment, we use hyper-
spectral data. The chapters are structured as follows:

1. We study and determine the weighting factors of the CLUB loss λCLUB and the
KL-divergence βKL for the DMVAE with CLUB. The reconstruction weights are
determined dynamically as previously mentioned. Here, we can already see the
impact of these weights on the model.

2. Once we have fixed the weights for CLUB and KL, an optimal learning rate and a
learning rate schedule are determined for both DMVAE with CLUB and the VAEs.
We use the exponential learning rate scheduler, which depends on a starting learning
rate η0 and learning rate decay γ. These are the parameters we optimise here and
fix for further experiments 2.

3. After having determined training-relevant hyperparameters, we systematically test
different latent sizes. For the DMVAE (with CLUB), we examine different sizes
of both private latent spaces and the shared latent space, and for the VAEs, we
only have to test various sizes for one latent size together with βKL. This helps to
determine suitable representation sizes for the modalities and to assess the impact of
CLUB. We consider these different configurations using our pre-determined metrics
and on downstream task performance.

4. Upon completing the test on different latent sizes, we can study single configurations
in more detail. To do so, we compare the DMVAE with and without CLUB loss and
evaluate lower and upper bounds on mutual information to assess how effectively
the CLUB loss performs. We also consider the structure of the latent space and
where different physical parameter values are placed within it. We then assess the

2Although it is generally possible that the different parameter configurations in the later experiments
have different optimal learning rates, by evaluating this in advance, we can remove this hyperparameter
from later, save compute and make the experiments easier to compare.
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downstream task performance on all combinations of latent spaces to test where the
underlying corresponding information is encoded. We also compare this to VAEs
and evaluate all models on a similar configuration.

5. After having investigated the default framework, we aim to extend it by incorpo-
rating a physical model of galaxy images in the image decoder, which should help
the latent space learn semantically meaningful geometric attributes of the galaxy
and possibly increase downstream performance. We investigate it and evaluate the
performance of this model using several metrics.

6. Once these experiments are completed, we turn to a different dataset containing
hyperspectral data from the HyPlant dataset. We investigate it as a source of multi-
modal image and spectral data to see how much information these modalities contain
about hyperspectral data.

5.3.1 Experiment 1: Finding suitable weights for KL and CLUB

Our loss function for the DMVAE with CLUB consists of three terms: Reconstruction,
KL-divergence and CLUB loss, whose weights we need to balance. In this experiment, we
investigate different values of the weights βCLUB and λCLUB.

Outcome: We end up with the values λCLUB = 0.1 and βKL = 0.01, which we fix for
further experiments.

Details: We now describe in detail how we come to these weight values. Since we
determine the reconstruction weight dynamically, to balance both modalities according to
the previously described formula, we only need to balance the KL divergence and CLUB.
Balancing different learning terms dynamically is also subject to the paradigm of Multi-
task learning (MTL). However, here, we conduct a test on various combinations of constant
weights βKL and λCLUB to determine a suitable combination that offers the best tradeoff
between reconstruction, KL-divergence, and CLUB performance. It is expected that βKL

can have a large impact on the latent space’s information content because it implicitly
controls how much the mutual information between input x and latent z is penalised.
This dependency is evident in eq. (3.5). It is important to note that the optimal KL and
CLUB weights might depend on the latent space size. However, due to the large size of
parameter combinations, we cannot test all parameters jointly. Instead, we first test for a
suitable weight combination and later check for a suitable latent size. Here, we first use
a latent size of 8 for all latent spaces, as a small latent size saves space and naturally has
less correlation between latent spaces. The results are shown in fig. 5.2, where the test
losses are visualised, decomposed into their components (with all components weighted
equally in the test loss) 3.

3Note that the loss components were evaluated on the test set, and the CLUB loss was here just
trained on the training set, such that the evaluation on the test set is only an approximation of the mutual
information estimate. In later experiments, we evaluate CLUB and mutual information more accurately.
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Figure 5.2: Test loss components for different βKL − λCLUB configurations, decomposed
for modality 1 and 2: Rtotal,1, Rtotal,2 (reconstruction performance), KLtotal,1, KLtotal,2

(KL-divergence), and ÎvCLUB(zs; p1), ÎvCLUB(zs; p2) (MI estimation).
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The configurations are grouped from left to right by their KL weight, and within each
block, they are sorted by the CLUB weight. This plot then shows, as expected, that
assigning lower weights leads to higher losses in the corresponding components. Since
the overall loss function reflects a trade-off between reconstruction quality and latent reg-
ularisation, increasing the weights of KL and CLUB inevitably reduces reconstruction
performance. It is desired that the mutual information between the latent spaces is min-
imal while having the best possible reconstruction performance. A suitable low CLUB
loss is generally reached for λCLUB = 0.1. A good reconstruction performance with a low
test loss and low KL-divergence is achieved with βKL = 0.01. A higher βKL can further
decrease the test loss; however, it comes at the cost of significantly worse reconstruction
performance.

5.3.2 Experiment 2: Learning Rate Schedule

In this experiment, we aim to determine a suitable learning rate schedule for VAEs on
images, VAEs on spectra, and the DMVAE with CLUB loss. We differentiate between
these models as they differ substantially and can have different learning rates. We use the
exponential learning rate scheduler as it is a standard scheduler for decaying the learning
rate over time, which can help achieve a lower loss.

ηt = η0 · γt

Outcome: The best found configurations are shown in table 5.1 and fixed for later
experiments.

Model Image VAE Spectrum VAE DMVAE with CLUB

(η0, γ) (10−3, 0.99) (10−4, 0.96) (10−4, 0.99)

Table 5.1: Best hyperparameter configurations for each model.

Details: We now describe how we arrive at these parameter values by evaluating the
performance for different decays γ ∈ {0.99, 0.975, 0.96} and start learning rates η0 ∈
{10−3, 10−4, 10−5, 10−6} on image/spectrum VAEs and on DMVAE with CLUB. We eval-
uate solely based on the test loss.

VAE for images: In this small experiment, we utilise the image modality with a latent
space of size 16 (resembling the same latent size that the decoders of the DMVAE had in
the previous experiment of 8+8), βKL = 0.01, which serves as a baseline here, as previous
testing has demonstrated that these parameters already yield satisfactory results. It is
essential to note that the total test loss is evaluated with βKL = 1 for easier comparability
in subsequent experiments. The results are shown in table 5.3

γ η0 = 10−3 η0 = 10−4 η0 = 10−5 η0 = 10−6

rec KL scaled total rec KL scaled total rec KL scaled total rec KL scaled total

0.99 0.22 1.88 0.24 2.11 0.23 1.88 0.25 2.11 0.48 1.62 0.5 2.10 0.86 1.47 0.87 2.34
0.975 0.22 1.98 0.24 2.20 0.24 1.85 0.26 2.08 0.57 1.46 0.58 2.03 0.92 1.25 0.93 2.17
0.96 0.22 2.03 0.24 2.25 0.25 1.88 0.27 2.12 0.69 1.31 0.7 2.00 0.97 0.93 0.98 1.89

Table 5.2: Test loss components (reconstruction, KL-divergence, scaled test loss, total test
loss with β = 1) for different η0 and γ.
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Considering the down-weighting factor of the KL-divergence by 0.01, we get that a starting
learning rate of 10−3 and γ = 0.99 results in the best test loss with the down-weighting
factor included, since the reconstruction loss here is the best with a relatively low KL loss.
Although other configurations have a lower total test loss, we choose the configuration
based on the fact that reconstruction is more important for our goals. The training plots
are included in fig. A.6. Additionally, when evaluating the reconstruction performance
visually, we can see that the model achieves satisfying results, as shown in fig. 5.3.

Figure 5.3: Visualisation of test dataset sample. Top row: original image after prepro-
cessing (unnormalized); bottom row: reconstructed image (unnormalized). Each column
shows, from left to right: red (z), green (r), and blue (g) channels, followed by the com-
bined RGB image.

VAE for spectra: We also test for the best start learning rate η0 and decay γ with the
same configuration as for images.

γ η0 = 10−3 η0 = 10−4 η0 = 10−5 η0 = 10−6

rec KL scaled total rec KL scaled total rec KL scaled total rec KL scaled total

0.99 0.28 3.78 0.32 4.06 0.28 0.69 0.29 0.97 0.28 1.02 0.29 1.30 0.39 1.91 0.41 2.30
0.975 2.96 10752.07 110.48 10755.03 0.27 0.63 0.28 0.90 0.27 1.07 0.28 1.34 0.51 1.58 0.53 2.09
0.96 0.27 2.88 0.30 3.15 0.27 0.75 0.28 1.02 0.30 1.14 0.31 1.44 0.54 1.60 0.56 2.15

Table 5.3: Test loss components for different η0 and γ.

We conclude that a starting learning rate of 10−4 with γ = 0.96 yields the best scaled
test performance, along with the best reconstruction and a reasonable KL performance.
The training plots are attached in fig. A.7. There, it is evident that the reconstruction
loss during training is quite noisy, and the loss only slowly decreases, indicating that the
reconstruction task is challenging for the model to learn. In fig. 5.4, you can see the
reconstruction performance visually.

Figure 5.4: Visualisation of test dataset sample. Top row: original spectrum after pre-
processing (unnormalized); bottom row: reconstructed spectrum (unnormalized). On the
x-axis is the wavelength in Å and the y-axis shows the flux in 10−17 erg

scm2Å
.
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DMVAE with CLUB: We repeat this now for the DMVAE with CLUB, with again a
latent size of 8 for each latent space, and we set βKL = 0.01 and λCLUB = 0.1. Similarly
to the VAE case, we need to consider that the learning objective down-weights specific
loss terms. Thus, we examine the components of the total test loss separately and reweigh
each to one, as visualised in fig. 5.5.

0.
00
1-
0.
99

0.
00
1-
0.
97
5

0.
00
1-
0.
96

0.
00
01
-0
.9
9

0.
00
01
-0
.9
75

0.
00
01
-0
.9
6

0.
00
00
1-
0.
99

0.
00
00
1-
0.
97
5

0.
00
00
1-
0.
96

0.
00
00
01
-0
.9
9

0.
00
00
01
-0
.9
75

0.
00
00
01
-0
.9
6

0

2

4

6

8

10

12

14
14.0114.0314.13

11.35

12.7112.53

10.5210.4310.17

10015.48

2.65 2.85 2.81

4.26 4.57

4.21

7.57 7.68
6.5

5.78 5.85 5.91
6.23 5.97 4.12

2.42 1.9

2.57

0.56

2 · 10−2 1 · 10−2 6 · 10−2
0.12

2 · 10−2

2 · 10−2 8 · 10−2
4 · 10−2

0.29

6 · 10−2 3 · 10−2 8 · 10−2 0.15 3 · 10−2

2 · 10−2

2 · 10−2 1 · 10−2
1 · 10−2

1.63

0.81 0.81 0.8 0.76 0.78

0.88

0.93 1.14 1.74

1.33
0.84 0.88 0.86 1.11 1.24

2.1
3.17 3.22 3.15

Start LR – γ

L
os
s
C
om

p
on

en
ts

rec1 rec2 club1

club2 kl1 kl2

Figure 5.5: Test loss components Rtotal,1, Rtotal,2, KLtotal,1, KLtotal,2, ÎvCLUB(zs; p1), and

ÎvCLUB(zs; p2) for different configurations of η0 and γ. Failed configurations are empty.

It is visible that a starting learning rate of 10−4 combined with a γ of 0.99 has the
best test loss. It also has a reasonably low KL-divergence, low CLUB loss, as well as
good reconstruction performance on both modalities. Here, reconstruction is the primary
objective, as we aim for the latent space to learn as much as possible about the modalities.
It is visible that higher learning rates are too large to reach good reconstruction abilities.
The smaller the learning rate gets, the worse the reconstruction ability, as it is too low to
learn suitable parameters for the model. Below a suitable starting learning rate of 10−4,
the trend is visible that lower γ reduces the reconstruction performance, implying that
keeping a higher learning rate longer is better than trying to reduce it too much. The
reconstruction performance is visualised in fig. 5.6 and its training plot is shown in fig. A.8.

(a) Top row: original image after preprocessing
(unnormalized); bottom row: reconstructed im-
age (unnormalized). Each group shows, from
left to right: red (z), green (r), and blue (g)
channels, followed by the combined RGB im-
age.

(b) Top row: original spectrum after prepro-
cessing (unnormalized); bottom row: recon-
structed spectrum (unnormalized). On the
x-axis is the wavelength in Å and y-axis in
10−17 erg

scm2Å
.

Figure 5.6: Visualisation of test dataset samples.
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5.3.3 Experiment 3: Evaluation of different latent space sizes

Here, different latent sizes are compared to study their impact on the metrics and down-
stream task performance and to find a suitable representation size in the latent spaces
for each modality. This step is critical because we need to implicitly optimise a tradeoff
of latent sizes to be large enough to capture all essential features, leading to a good re-
construction performance, while also not making the latent spaces too large, which could
increase correlation and therefore increase mutual information, leading to higher CLUB
loss, which could decrease the reconstruction loss.

Outcome: We find that for VAEs, smaller βKL values generally lead to improved re-
construction and downstream performance. Depending on the modality, either a lower
(for spectra) or a larger (for images) latent size is beneficial for the downstream task.
For reasonable reconstruction performance, images require a larger latent size of 40 or 60,
while spectra perform better with smaller latent sizes, such as 4. For DMVAE with CLUB,
we find that larger private latent space increase their respective reconstruction abilities
while larger shared latent spaces generally harm them. When excluding the CLUB loss,
a larger shared latent size also improves reconstruction performance. The reconstruc-
tion performance of the spectrum modality does not benefit from larger latent sizes. For
both DMVAE variants, the downstream performance does not consistently depend on the
private latent space, but rather on the shared latent size, which decreases/increases for
larger latent sizes when CLUB is used/not used, respectively. The cross-reconstruction
performance is significantly worse than for normal reconstruction.

Details: We investigate the latent spaces of {4, 10, 20, 40, 60}. We choose these values
because [XSdS+23] also studied suitable latent sizes, including sizes of 10, 20, 40, 60 and
determined that a latent size of 40 was able to reproduce most morphological features
in a galaxy image. For spectra, a lower latent size seems suitable, as [ICT23] concluded
that a latent size of 4 is suitable to represent galaxy spectra from SDSS spectral data.
For the DMVAEs, we test each combination of latent sizes (private1, private2, shared) ∈
{(s, p1, p2)|s, p1, p2 ∈ {4, 10, 20, 40, 60}}. Due to the sheer size of the combinations (53 =
125), we cannot test βKL and λCLUB values jointly, which is why we conducted the
first experiment to fix these values. For VAEs, it is suitable to test different βKL and
latent sizes jointly as computing all combinations in (βKL, latent size) ∈ {(βKL, l)|βKL ∈
{0.001, 0.01, 0.1, 1}, l ∈ {4, 10, 20, 40, 60, 120}} is computationally feasible. Here, we also
include the latent size of 120 for the VAEs, as in the DMVAE, each modality can be
represented by a latent size of up to 60 + 60, which ensures better comparability. For the
following plots, to improve readability, the colour spectrum only visualises the [0.05, 0.95]
percentile of all values, and the shown metric values are rounded to two decimal places.

VAEs for Images: Here, traditional VAEs are used to evaluate the performance that can
be expected if only one modality is given. We compare different combinations of βKL and
latent size, as both parameters can significantly impact both reconstruction performance
and downstream task performance.
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(a) MSE ↓ (b) FID ↓ (c) SSIM ↑

Figure 5.7: Reconstruction performance of image VAE: MSE, FID and SSIM metric visu-
alisation dependent on latent size and βKL (↓: Lower is better, ↑: Higher is better).

First, we evaluate the reconstruction quality of the image in fig. 5.7. It is visible that both
a larger latent space and a lower βKL consistently improve the reconstruction performance
across all metrics. The pixel-wise metric MSE, as well as the perceptual metrics FID and
SSIM, all show this trend. The best reconstruction performance is consistently achieved
for the largest latent sizes and the lowest βKL. It can be observed that a latent size of 40
or 60 can represent images well with βKL ≤ 0.01.

(a) R2 − logM∗ ↑ (b) R2 − avgSFR ↑ (c) R2 − sSFR ↑

(d) R2 − ZMW ↑ (e) R2 − ZHP ↑ (f) R2 − TAGE,MW ↑

Figure 5.8: Downstream regression performance of physical properties, measured in R2

dependent on βKL and latent size (↑: Higher is better).

In fig. 5.8, the downstream task performance is shown for every output separately. The
performance varies between different physical properties, but generally increases if βKL is
sufficiently low. Additionally, it performs well for small latent sizes, with only slight im-
provements for larger ones, indicating that while a larger latent size significantly enhances
reconstruction performance due to increased expressivity, it has only a subtle impact on
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downstream performance. One reason could be that the image also contains other non-
related galaxies, which are captured in larger latent sizes, but do not always provide a ben-
efit to property prediction. Meanwhile, lower βKL perform better on both tasks, because
the mutual information between x and z is penalised less, preserving more information.

VAEs for Spectra: Here, we apply VAEs to spectral data and compare different combi-
nations of βKL and latent size.

(a) MSE ↓

Figure 5.9: Reconstruction performance of spectrum VAE dependent on latent size and
βKL (↓: Lower is better).

First, the reconstruction quality of the image is evaluated in fig. 5.9. It is evident that
mainly a lower βKL improves the reconstruction performance up to a certain point, while
low latent sizes seem to reconstruct the data better than larger ones.

(a) R2 − logM∗ ↑ (b) R2 − avgSFR ↑ (c) R2 − sSFR ↑

(d) R2 − ZMW ↑ (e) R2 − ZHP ↑ (f) R2 − TAGE,MW ↑

Figure 5.10: Downstream regression performance of physical properties, measured in R2

dependent on βKL and latent size (↑: Higher is better).

In the fig. 5.10, the downstream task performance is evaluated for every physical property.
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Here, the performance varies between different physical properties, but generally increases
for lower βKL and smaller latent sizes. This shows that a small latent size can capture
the essential features of a spectrum while being more robust in doing so than for larger
latent sizes. This result aligns with findings from [ICT23] that a latent size of 4 is already
suitable for spectra. Now, the multimodal DMVAEs (with CLUB) are investigated.

DMVAE with CLUB: We investigate various combinations of latent spaces to assess
their impact on different metrics and determine a suitable representation size for both
modalities. We seek a tradeoff between a reasonable size that captures all details while
maintaining a low inherent mutual information between the representations. This also
gives indications on how well the model can learn the modalities and where information
is stored. Due to the size of the parameters to optimise, the βKL = 0.01 and λCLUB = 0.1
values from the first experiment, along with an initial learning rate of 10−4 and γ = 0.99,
are used. We study all the described combinations of latent sizes. First, we examine the
reconstruction performance for each modality when both modalities are provided as input,
using the MSE, FID, and SSIM metrics.

(a) MSE for Modality 1: Image ↓ (b) FID for Modality 1: Image ↓

(c) SSIM for Modality 1: Image ↑ (d) MSE for Modality 2: Spectrum ↓

Figure 5.11: Reconstruction performance of DMVAE with CLUB of modality 1 and modal-
ity 2: MSE, FID and SSIM metric visualisation dependent on latent size and private 1,
private 2 and shared latent size (↓: Lower is better, ↑: Higher is better).

When looking at the pixel-wise reconstruction performance as in fig. 5.11, multiple trends
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are visible: For reconstructing images (modality 1), a larger private 1 latent size increases
the reconstruction performance significantly, as it enables the model to capture more
features of the images, resulting in more detailed reconstructions. It is also evident that
increasing the private 2 (spectra) latent size has a minimal impact on the reconstruction
capabilities of modality 1. It is also visible that a larger shared latent size seems to
decrease the reconstruction performance. When we evaluate the FID and SSIM metrics,
which assess perceived reconstruction performance rather than pixel-wise performance,
we observe similar trends. For the reconstruction capabilities of spectra in fig. 5.11d,
it is also visible that a higher shared latent space seems to decrease the reconstruction
performance. However, it is evident here that the private latent space of modality 2 and
1 has no consistent impact on its reconstruction performance. Overall, either a private
latent size of 40 or 60 for images and minimal latent sizes for private 2 and shared seem to
represent the data well. The reason for this trend, that a larger shared latent size decreases
reconstruction performance, is not immediately apparent, because one would typically
expect that a larger latent space should always improve reconstruction performance. The
CLUB loss could be responsible for this, which we will study in more detail later. However,
it may not be necessary to achieve perfect reconstruction performance, as not all features
in the image are important for the downstream task. When comparing the reconstruction
performance to that of the VAE (see fig. 5.7), it can be observed that the image VAE
achieves better reconstruction performance according to MSE, FID, and SSIM, particularly
for the largest latent space configurations. In contrast, for spectra, there is no significant
difference (see fig. 5.9). This could be because the VAE offers more latent space that
is only used for the image modality and is not restricted due to the inclusion of a PoE.
Still, the DMVAE can achieve better downstream task performance despite its often worse
reconstruction performance, due to its multimodality, as we now examine.

(a) R2 − logM∗ ↑ (b) R2 − avgSFR ↑ (c) R2 − sSFR ↑

(d) R2 − ZMW ↑ (e) R2 − ZHP ↑ (f) R2 − TAGE,MW ↑

Figure 5.12: Downstream regression performance of physical properties, measured in R2

dependent on private 1, private 2 and shared latent size for the DMVAE with CLUB (↑:
Higher is better).
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Specifically, we examine the downstream task performances of physical property prediction
to assess how the latent sizes impact this. For every predicted physical property, its R2

value is visualised in fig. 5.12. It is visible that the performance varies significantly. A slight
trend is visible, indicating that lower shared latent sizes may lead to better performance
on specific properties, such as the redshift ZHP . However, on others, a larger shared latent
size appears to be beneficial for properties like stellar mass logM∗. This suggests that the
large shared latent size can potentially contain relevant information for some properties,
while negatively impacting prediction performance for others due to the overall poorer
reconstruction performance. We can also evaluate how much information each modality
contains about the other by examining its cross-reconstruction capabilities.

(a) MSE cross-reconstruction of Modality 1 ↓ (b) MSE cross-reconstruction of Modality 2 ↓

Figure 5.13: Cross-reconstruction performance when only other modality is given, depen-
dent on shared, private 1 and private 2 latent size for the DMVAE with CLUB (↓: Lower
is better). The upper colour was differently rescaled for a clearer impression.

This also shows the not directly obvious behaviour that larger shared latent sizes lead
to significantly worse cross-reconstruction for both modalities. The cross-reconstruction
performance remains significantly below that of joint reconstruction, as seen in fig. 5.11.
This could be a consequence of CLUB or because they do not share enough information
for accurate cross-reconstruction, insufficient training or because the KL weight is too low
to approximate a Gaussian in latent space accurately, leading to unrealistic sampled latent
values, which is especially relevant for cross-reconstruction. We now investigate whether
this effect of lower-performing large shared latent sizes is caused by CLUB loss.

DMVAE without CLUB: We repeat the experiment on the same combinations of latent
spaces on the DMVAE without CLUB loss.
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(a) MSE for Modality 1: Image ↓ (b) MSE for Modality 2: Spectrum ↓

Figure 5.14: Reconstruction performance of DMVAE without CLUB of modalities 1 and
2 dependent on private 1, private 2 and shared latent size (↓: Lower is better).

This plot illustrates what one would expect to see for the reconstruction performance
of images, which increases for larger shared and private image latent sizes due to the
larger representation size that the model can learn to utilise for the image. For the
spectrum modality, it can be observed again that the latent size has a limited impact on
its reconstruction performance, as spectra do not require a large size for representation.
A latent size combination of 60× 60× 60 appears to be suitable for representing the data.
This model comes much closer to the reconstruction performance of the VAEs, as seen in
fig. 5.7 and fig. 5.9, and generally performs better for most configurations on reconstruction
compared to DMVAE with CLUB, which reflects in its downstream task performance.

(a) R2 − logM∗ ↑ (b) R2 − avgSFR ↑ (c) R2 − sSFR ↑

(d) R2 − ZMW ↑ (e) R2 − ZHP ↑ (f) R2 − TAGE,MW ↑

Figure 5.15: Downstream regression performance of physical properties, dependent on
private 1/2 and shared latent size for the DMVAE without CLUB (↑: Higher is better).
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This is visualised in fig. 5.15. Here, the downstream task performance again varies sig-
nificantly, for the same possible reasons as before; however, a slight trend emerges that
larger shared latent sizes may increase task performance. This is, for example, visible for
the redshift ZHP . We can also evaluate the cross-reconstruction performance in fig. 5.16.

(a) MSE for Modality 1: Image ↓ (b) MSE for Modality 2: Spectrum ↓

Figure 5.16: Cross-reconstruction performance when only other modality is given, depen-
dent on shared, private 1 and private 2 latent size for the DMVAE without CLUB (↓:
Lower is better).

This performs better than in fig. 5.13 and shows trends that one would expect. The first
trend is that a larger shared latent space improves cross-reconstruction performance, as
more information can be utilised for cross-reconstruction when the shared latent space
is larger. This is visible for the cross-reconstruction of both modalities. For the cross-
reconstruction of images, a second trend is visible: a smaller private 1 latent size increases
the corresponding cross-reconstruction performance. This occurs because the ratio of
shared to private latent size becomes larger, allowing more information from the other
modality to be used for reconstruction. However, for the spectrum modality, the op-
posite trend is visible, meaning that a larger private latent space for spectra increases
its reconstruction performance. This is counterintuitive and may be due to the minimal
dependency of the spectrum on the latent size.

By removing the CLUB loss, the behaviour is as one expects, which shows that the CLUB
loss causes the unexpected behaviour. This behaviour can now be explained in the follow-
ing way. As the shared latent space becomes larger, it can capture more shared informa-
tion, introducing additional correlations between latent spaces. As the CLUB loss relies
on predicting the private latent spaces from the shared latent spaces, it becomes easier
to predict them more accurately, leading to higher loss values. This trend is evident in
fig. A.9, which illustrates that the approximated CLUB loss values increase with a larger
shared latent size. These larger loss values reduce the impact of the reconstruction loss
and the KL-divergence as their relative loss reduces when compared to the total optimi-
sation objective. Therefore, CLUB can also harm cross-reconstruction performance for
large latent sizes. If good cross-reconstruction performance is desired, one would have
to potentially increase βKL and re-estimate the other hyperparameters on the objective
of cross-reconstruction. As this is not the primary target here, we proceed to the next
experiment.
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5.3.4 Experiment 4: Latent space and downstream task evaluation

In this section, we compare the downstream task performance of VAEs and DMVAEs with
regression models, and evaluate the latent spaces of VAEs and DMVAEs (with/without
CLUB). For this, we study the downstream task performances and use t-SNE 4 to visualise
how well the physical properties are separated in latent space. If the values are well sepa-
rated in latent spaces, it is easier for the downstream model to predict the correct value.
This helps to comprehend why the performance differs on different physical properties.
Furthermore, we study the contributions of unique and shared features to the downstream
task using the methods described in chapter 4. To ensure that the mutual information
is minimised between the private and shared latent spaces, we compute lower and upper
bounds on it.

Outcome: We observe that VAEs exhibit poor performance on downstream tasks for
both modalities, whereas the DMVAEs perform significantly better on these tasks. Here,
the DMVAE without CLUB loss outperforms the one with CLUB and even surpasses the
multimodal regression model in specific properties, which is otherwise the best. While
studying the contributions of each latent space to the downstream task, we observe that
CLUB loss enhances the model’s ability to capture shared information that contributes to
the downstream task compared to when it is left out, while reducing helpful information in
the private representations. We find that the DMVAEs better separate the properties in
their latent space than VAEs. We also see that the DMVAE with CLUB loss can minimise
mutual information between latent spaces.

Details: This section describes how these observations are obtained. For a fair compar-
ison, we choose a latent size of 120 for the VAEs and latent sizes of 60 for the DMVAES
latent spaces and βKL = 0.01 and λCLUB = 0.1.

Regression models: Before examining the performance of the VAEs and DMVAEs, first,
we directly train regression models to predict physical properties from the modalities. This
should serve as a baseline and an upper bound on the maximum performance expected
from the VAE/DMVAE models’ downstream task performance. The regression models use
the same architecture as for the VAEs, meaning that the same image/spectrum encoders
are used for the corresponding modalities, with the downstream model directly attached to
them. For the multimodal case, the outputs of the encoders are concatenated and fed into
the downstream regression model. These models are treated as a single model and trained
directly on the regression task. The performance of these regression models is limited by
the model’s complexity, the dataset size, the inherent noise in the data, and the extent
to which the modalities inherently reveal information about the physical properties. The
models were trained for 50 epochs. The results are visualised in table 5.4, which serve as
reference values. It can also be observed that the multimodal regression model performs
the best overall.

Model R2 − logM∗ R2 − avgSFR R2 − sSFR R2 − ZMW R2 − ZHP R2 − TAGE,MW

Image Regressor -0.576 0.393 0.443 0.316 0.424 0.170
Spectral Regressor 0.033 0.432 0.429 0.312 0.497 0.059
Image + Spectral Regressor -0.054 0.452 0.470 0.380 0.553 0.244

Table 5.4: Regression model R2 performance on different modalities.

4We run t-SNE on default hyperparameters for every experiment.
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VAEs: Here, the VAEs applied to image and spectral modalities are examined in terms
of their downstream task performance in predicting physical properties based on their
latent values, serving as a reference for the DMVAVE, whose downstream performance is
evaluated later.

Model R2 − logM∗ R2 − avgSFR R2 − sSFR R2 − ZMW R2 − ZHP R2 − TAGE,MW

Image VAE −0.437 0.105 0.150 0.247 0.470 0.047
Spectrum VAE -17.824 0.130 -0.160 -1.568 0.276 -1.575

Table 5.5: VAE downstream performance R2 for image and spectrum modalities.

The results are visualised in table 5.5. It is evident that the image VAE performs best on
the downstream task of predicting redshift ZHP . The other property predictions perform
worse, and logM∗ achieves the lowest performance. Compared to that, the VAE performs
worse on spectral data for the physical property prediction almost everywhere, as seen
in table 5.5. This suggests that the model has greater difficulty in extracting relevant
features from the spectra. As already observed in fig. 5.8 and fig. 5.10, the performance
depends on the latent size. Especially for spectra, a larger latent size harms performance,
which could be due to non-robust embeddings in unnecessarily large latent spaces.

These performance differences between properties, as well as the performance drop, can
also be studied by visualising the latent space and colouring the respective latent points by
their physical property values, as shown in fig. 5.17. The reason for this is that the latent
values are distributed in a high-dimensional space, and when they are well separated in
this space, it is easier for the downstream model to make a prediction.

(a) logM∗ (b) avgSFR (c) sSFR

(d) ZMW (e) ZHP (f) TAGE,MW

Figure 5.17: Visualisation of the latent space of the VAE on image data using t-SNE,
where datapoints are coloured by their corresponding physical property.

It is visible that the latent points are not clustered and that the physical properties are
not always well-separated. For the redshift ZHP , a clear separation between high and low
values is visible, while this is less visible for the other properties. In contrast to this, we
also look at the latent space structure of the VAE with spectral data fig. 5.18.
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(a) logM∗ (b) avgSFR (c) sSFR

(d) ZMW (e) ZHP (f) TAGE,MW

Figure 5.18: Visualisation of the latent space of the VAE on spectral data using t-SNE,
where datapoints are coloured by their corresponding physical property.

It is clearly visible that the latent space is significantly more clustered. Here, we can
also observe a similar trend, where the redshift values are more distinct compared to
the other properties. After evaluating the direct regression performance and downstream
performance of the VAEs on single modalities, we proceed to the DMVAEs.

DMVAE with CLUB: Here, we evaluate how the information for different property
prediction tasks is distributed among latent spaces. To achieve this, we first evaluate the
downstream task on all subsets of the latent space.

Latents
R2

logM∗ avgSFR sSFR ZMW ZHP TAGE,MW

Zp1 ∪ Zp2 ∪ Zs 0.357 0.312 0.392 0.238 0.553 0.113
Zp2 ∪ Zs 0.252 0.303 0.372 0.244 0.553 0.128

Zp1 ∪ Zs 0.341 0.246 0.329 0.233 0.501 0.077
Zp1 ∪ Zp2 0.292 0.281 0.362 0.206 0.519 0.113
Zp1 -0.009 0.038 0.111 0.160 0.318 0.013

Zp2 0.078 0.230 0.315 0.133 0.419 0.076
Zs 0.028 0.255 0.349 0.174 0.478 0.024

Table 5.6: DMVAE with CLUB downstream performance of all latent subspaces shown in
R2 values.

The results are visualised in table 5.6. This can now be used to evaluate which unique/shared
components from the modalities contain how much information about the corresponding
property. The best performance is always expected for the case containing all subspaces,
because this contains all unique, redundant and synergistic information that can com-
plement each other for a downstream task. When comparing this performance to the
performance of leaving one latent space out, we can study its impact by how much the
performance drops when compared to the case when all latents are apparent. By removing
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one latent space, the impact of its information on the property prediction can be evaluated.
When examining a specific property, such as logM∗, we can observe that the performance
drops most when omitting the private 1 latent space, compared to when all latent spaces
are utilised. This shows the significant impact of the unique features from modality 1 on
the downstream task. When examining the performance of logM∗ for the corresponding
single latent spaces, it is apparent that they are significantly lower than their joint perfor-
mance of 0.357, indicating that both contain complementary and synergistic information,
which collectively contain most of the information about the property. Compared to the
VAEs, the downstream performance on all joint latent spaces is better in terms of all
properties. Also, we can compare the results more fairly with the VAEs in cases where
only private and shared latent spaces are used, (p1+s) for the image VAE and (p2+S) for
the spectral VAE, which is information that could also be extracted from single modalities
(except the synergistic ones). When comparing these respective performances in table 5.6
with table 5.5, we observe that the DMVAE consistently outperforms the VAE in this case
as well, which could be attributed to the shared features capturing more complementary
information usable for the downstream task. Compared to the performance of the regres-
sion models, the DMVAE with CLUB comes close but does not fully reach the capabilities
of the multimodal regression model for most properties, see table 5.4. We now apply the
second SHAP-based method, described in chapter 4, to evaluate the impact of each latent
space on the downstream task. The results are shown in fig. 5.19.
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Figure 5.19: Contributions of each latent space to regression performance for DMVAE
with CLUB computed using the method introduced in chapter 4 based on SHAP.

This method should directly approximate the contributions of each latent space and exhibit
similar trends to those shown in table 5.6, which it largely does. For the logM∗ property,
this method also predicts that most information comes from the private 1 latent spaces.
However, sometimes this method also disagrees with the subset-based method. Here,
for example, the contribution of the unique spectrum information to the redshift (ZHP ) is
underestimated when compared to table 5.6, which shows the most significant performance
drop when private 2 is left out. Here, we also evaluate the structure of the joint latent
space, which separates all properties reasonably well fig. 5.20. Again, the redshift ZHP

has the most apparent separation.
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(a) logM∗ (b) avgSFR (c) sSFR

(d) ZMW (e) ZHP (f) TAGE,MW

Figure 5.20: Visualisation of the latent space of DMVAE with CLUB using t-SNE, where
datapoints are coloured by their corresponding physical property.

DMVAE without CLUB: To investigate how much of the previous results are attributed
to the CLUB loss, we also examine these properties without the CLUB loss. Again, the
downstream task performance is computed on all latent space combinations.

Latents
R2

logM∗ avgSFR sSFR ZMW ZHP TAGE,MW

Zp1 ∪ Zp2 ∪ Zs 0.253 0.388 0.406 0.380 0.694 0.135
Zp2 ∪ Zs 0.138 0.293 0.321 0.324 0.656 0.110

Zp1 ∪ Zs -0.088 0.128 0.176 0.293 0.511 0.106
Zp1 ∪ Zp2 0.125 0.395 0.427 0.345 0.685 0.081
Zp1 -0.709 0.070 0.137 0.224 0.447 0.001

Zp2 0.274 0.287 0.324 0.239 0.618 0.135
Zs 0.477 0.061 0.140 0.301 0.309 0.063

Table 5.7: DMVAE without CLUB downstream performance of latent subspaces shown
in R2 values.

In table 5.7, it is visible that the private representations have the most significant influence
on the downstream task performance. This is especially apparent when comparing the
performance to table 5.6. It is also visible on almost all properties that the downstream
performance changes only marginally when the shared latent space is excluded. Similar
trends are visible when visualising the contributions using SHAP in fig. 5.21.
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Figure 5.21: Contributions of each latent space to regression performance for DMVAE
without CLUB computed using the method introduced in chapter 4 using SHAP.

It is, however, important to note that here the contributions are less meaningful, since the
MI between latent spaces is not minimised. However, the trend is visible that the shared
latent space has only a small contribution to the downstream task, which aligns with the
subset-based method.

(a) logM∗ (b) avgSFR (c) sSFR

(d) ZMW (e) ZHP (f) TAGE,MW

Figure 5.22: Visualisation of the latent space of DMVAE without CLUB using t-SNE,
where datapoints are coloured by their corresponding physical property.

When evaluating the joint latent space, it is again evident that the model learns a latent
space that can separate physical properties reasonably well, as shown in fig. 5.22. To
directly study how well the mutual information minimisation works, we study the mutual
information between all latent spaces by evaluating lower and upper bounds using InfoNCE
and variational CLUB to approximate these. Note that these bounds only indicate trends
and cannot accurately compute the exact mutual information value. For this, we train the
neural networks needed for these methods for 50 epochs on the sampled latent values on
the test dataset.
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Figure 5.23: Comparison of InfoNCE lower bounds and CLUB upper bounds on mutual
information for each latent space pair across models.

The results are visualised in fig. 5.23. The CLUB loss succeeds in minimising MI. It can
significantly reduce the MI between the private latent spaces, which the model is only im-
plicitly trained to do, and between the private and shared latent spaces. Without CLUB,
there is considerable leakage and redundancy between the private information spaces. Be-
tween private 1 and shared information, the MI is already low without CLUB loss, possibly
because images naturally contain many data points for which a large latent space is nec-
essary, as we have previously seen. Here, the model needs to encode more information
into the latent space, resulting in fewer redundancies and possibly more independent rep-
resentative features, which could lead to reduced mutual information between the latent
spaces. Between private 2 and shared information, the latent size is larger (60 + 60) than
necessary for representing spectra, leading to more redundancies. CLUB loss can minimise
all of these redundancies.

5.3.5 Experiment 5: Physical-model-based decoder

Now, we test whether the inclusion of a physical model for galaxy images in the image
decoder can help guide the latent space to learn a more semantically meaningful geometric
representation, and if so, whether it influences downstream task performance. By using
the differentiable model, the image encoder should learn to predict the correct underlying
physically meaningful parameters, which are then input to the physical model to predict
the shape of the galaxy.

Outcome: When incorporating a physical model in the decoder, the framework can
predict meaningful geometric parameters approximately, while decreasing reconstruction
performance for images. The model relies more heavily on private information from spectra
and delivers downstream performance, as shown in table 5.8, which is inferior to the
DMVAE with CLUB.

Model R2 − logM∗ R2 − avgSFR R2 − sSFR R2 − ZMW R2 − ZHP R2 − TAGE,MW

DMVAE with CLUB+phy. decoder 0.135 0.245 0.326 0.179 0.552 0.099

Table 5.8: DMVAE with CLUB and physical-model based decoder downstream perfor-
mance R2.
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Details: We now describe how we arrive at this downstream task performance in detail,
by first describing the differentiable physical model and the architecture for incorporating
it into a physical-model-based image decoder. This architecture uses a model G that
approximates a physical process Ψ which depends on physical, meaningful parameters p
to reconstruct the measurement x as described by [ACC20]:

G(p) ≈ x← Ψ(p)

In an autoencoder framework, part of the encoder predicts these physical parameters with
an encoder function f(x) = p̂. Then an autoencoder decodes p̂ back into the reconstructed
data item x̂ = g(p̂). By replacing the decoder g with a differentiable physics model G,
the encoder learns to predict the true underlying parameters of the model f(x) = p̂ ≈ p
such that G(p̂) = x [ACC20]. Since the model is trained in an unsupervised way, we do
not need the corresponding true model parameters p. Using this approach, the framework
learns to predict the physical parameters, which helps guide the latent space to be more
semantically meaningful. An image of a galaxy can be modelled by an exponential profile

that is oriented, and it depends on the four parameters p =
[
I0 A e θ

]T
. Here, I0 sets

the maximum intensity, A scales the length of the major axis, e controls how elliptic the
profile is, and θ sets the galaxy’s orientation. Based on these parameters, the intensity I
can be formulated as follows [ACC20], [TK21]:

I(r) = I0exp(−r′),

r′ =

√(
x′

A

)2

+

(
y′

B

)2

,

with the ellipticity e
B = A(1− e),

where

x′ = Xicosθ − Yjsinθ and y′ = Xisinθ + Yjcosθ

and (Xi, Yj) are uniformly sampled coordinates from a 128×128 grid from [−1, 1]× [−1, 1].
We now build a decoder model based on this intensity model, which can then be used in
conjunction with an encoder model that predicts physical parameters, as well as a classical
VAE-like latent space for capturing residual features. This model is visualised in fig. 5.24.

I0

A

e

θ

Latent vector Residual
Model

Physical
Model

Fusion
Model

Output
Image

Figure 5.24: Physical-model-based decoder model architecture.

This decoder predicts images based on a latent space that is divided into physical param-
eters and a normal VAE-like latent space. The physical model returns a 1-dimensional
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intensity map of size 128× 128. Since the physical model only includes a simplified repre-
sentation of galaxy profiles, we need to use an additional network, based on the previously
used decoder architecture, to predict the residual features that the model does not contain,
to reconstruct images more accurately. This is done in conjunction with a fusion network,
which is a simple CNN that utilises the model’s intensity map, combined with the residual
image, to reconstruct an RGB image. Then, the encoder learns to predict such physical
parameters as well as latent values representing the residual data.

DMVAE with CLUB: Here, we investigate the inclusion of this physical-model-based
decoder in the DMVAE with CLUB. The four parameters are predicted as part of the
private latent space of the images. To guide the four latent parameters in a meaningful
way, they only receive gradients from the physical model and the CLUB loss for disen-
tanglement, while being excluded from the KL-divergence penalty and gradients from the
residual neural network. To ensure that the model actively uses the physical model, it is
necessary to use a residual model that is less powerful than the original decoder model.
This is achieved by reducing the channel count of the original decoder to one-quarter of its
original value. During testing, it showed that this was necessary for the physical model to
learn meaningful parameters that predict an intensity map closely mirroring the original
image, which can then be incorporated into the resulting generated image. This model
was used to test downstream task performance.

In table 5.8, it is demonstrated that we achieve slightly worse downstream performance
than the DMVAE with CLUB and without the physical decoder. The prediction perfor-
mance is also visualised in more detail in the Appendix fig. A.10. As we mainly examine
downstream task performance here, it is relevant that the physical model guides the la-
tent space to contain physically meaningful values. These values, however, do not appear
to improve downstream task performance, as the DMVAE with CLUB and without the
physical model also captures the galaxy’s shape in its latent variables, with better image
reconstruction performance. The functionality of the decoder after training is illustrated
in fig. 5.25, which shows how the physical model is applied to a test sample. The encoder
appears to roughly estimate the parameters of the galaxy’s shape, although with some
inaccuracies. It is important to note that the physical model tries to predict the shape
of the normalised galaxy images. Because some galaxies are irregularly shaped or contain
unusual objects that overlap with the central galaxy, the model sometimes struggles to
predict a fitting intensity map. Meanwhile, the neural network for residuals predicts the
shape of galaxies and other objects that are not centred. The combination of both results
in an image that primarily contains features from the neural network, with only minor
contributions from the physical model. During training, it could be observed that for some
runs, the model completely disregarded the physical models.

(a) Original (b) Original
(normalised)

(c) Physical
model

(d) Neural
residual

(e) Fused image
(normalised)

(f) Recon-
structed

Figure 5.25: Relevant intermediate images produced by physical-model-based decoder.
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Figure 5.26: DMVAE with CLUB and physics-based decoder plots.

Additionally, the contributions of all latent spaces to the property prediction task, as well
as the mutual information between latent spaces, were evaluated in fig. 5.26. It shows
that the private spectral information has a larger impact on the task than private image
information and that MI was well minimised. A reason for the increased influence of
private spectral features could be that image reconstruction and corresponding feature
extraction perform worse due to the physical model, which is complicated for the model
to use constructively. Then, the downstream model could learn to rely more on the
spectrum modality instead. A solution could potentially involve longer training, different
hyperparameters, or additional regularisation objectives, as in [TK21].

5.3.6 Summary

In the first five experiments, image and spectral galaxy data were used to compare single-
and multimodal data on reconstruction, cross-reconstruction, and downstream tasks for
VAEs, DMVAEs, and regression models. The results are shown in table 5.9.

Regression models VAEs DMVAEs

Metric Image Spectrum Image + Spectrum Image Spectrum Without CLUB With CLUB With CLUB+phy. decoder

MSE Image - - - 0.135 - 0.129 0.229 0.42
MSE Spectrum - - - - 0.263 0.27 0.287 0.286
Cr-recon MSE Image - - - - - 1.089 20.399 1.337
Cr-recon MSE Spectrum - - - - - 1.031 15.573 1.333
R2 − logM∗ -0.576 0.033 -0.054 −0.437 -17.824 0.253 0.357 0.135
R2 − avgSFR 0.393 0.432 0.452 0.105 0.130 0.388 0.312 0.245
R2 − sSFR 0.443 0.429 0.470 0.150 -0.160 0.406 0.392 0.326
R2 − ZMW 0.316 0.312 0.380 0.247 -1.568 0.38 0.238 0.179
R2 − ZHP 0.424 0.497 0.553 0.470 0.276 0.694 0.553 0.552
R2 − TAGE,MW 0.170 0.059 0.244 0.047 -1.575 0.135 0.113 0.099

Table 5.9: Comparison of all metrics (reconstruction, cross-reconstruction, downstream
performance) across all models investigated.

The regression performance should serve as an upper bound on the performance that could
be expected from the VAE/DMVAE models in the optimal case, when either images or
spectra are given, and for the multimodal case. Here, it is visible that for some properties,
such as stellar mass, spectra perform better, while for others, like age, images perform
better. However, in most properties, the multimodal regression model performs best.
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The VAEs are often unable to achieve the same level of property prediction performance
as the regression models. The image VAE achieves better downstream task performance
on most metrics compared to the spectrum VAE.

The traditional DMVAE outperforms the VAEs on every property prediction. For redshift,
it even exceeds the performance of the multimodal regression model, and only underper-
forms for stellar mass prediction. This indicates that the multimodal case contains more
information that can improve accuracy on property predictions. The DMVAE with the
additional CLUB loss exhibits lower performance on almost all metrics compared to the
traditional DMVAE. This is also expected as the further loss terms result in a tradeoff
with a lower impact of the reconstruction terms. The only exception is the stellar mass,
which is predicted more accurately. Reaching the best performance, however, is not the
primary goal of using the CLUB loss, as this term should primarily ensure clear feature
separation between private and shared features to investigate where the information is
stored. Adding a physical-model-based decoder to guide the latent space slightly harms
the model’s performance, compared to that of the DMVAE with CLUB. It can also be
observed that the cross-reconstruction performance of DMVAE with CLUB is poor for
this parameter configuration.

5.3.7 Experiment 6: Hyperspectral remote sensing data

We now move on from images and spectra and look at hyperspectral data, which combines
both data types in data cubes containing spatial and spectral components. Here, we aim
to utilise hyperspectral data as a source for both image and spectral data due to their
inherent relations, and investigate the amount of information these modalities contain
about the underlying hyperspectral data. Images can be viewed as a special case of this
data, obtained by selecting specific spectral bands, while spectra can be seen as a special
case, obtained by averaging over the spatial domain. Using both modalities obtained from
this, we apply our previously developed framework to the extracted RGB and spectral
data, with the downstream task of reconstructing the hyperspectral data source. It is
investigated where most of the information for this task is encoded. This is useful for
studying whether expensive hyperspectral sensors can be approximated/replaced by a
cheaper combination of an RGB/multispectral sensor and a spectrometer, which could
contain similar information about the underlying data due to correlations.

Outcome: It can be observed that unique image features contain the most informa-
tion about the hyperspectral data, while shared features contain less information, and the
unique spectra information has the least amount of information. However, the hyperspec-
tral reconstruction performance is limited when using images combined with spectra in
this experiment.

Details: Here, the experiment is described in more detail. For the dataset, we investi-
gate the remote sensing dataset Hyplant FLUO 5. The Hyplant dataset contains airborne
observations, taken by two sensors: DUAL and FLUO [SAC+19]. DUAL captures a broad
range of wavelengths (400-2500 nm) while FLUO captures data in the range of (670-780

5We also implemented the method on the MaNGA dataset; however, the data loading was too slow to
complete.
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nm) in a finer resolution [SAC+19]. We specifically use the radiance data. These datasets
can be used to derive plant properties and retrieve sun-induced chlorophyll fluorescence
(SIF), a signal emitted by plants that provides information about their photosynthetic
properties [SAC+19]. We use the same setup as in previous experiments, so we do not
have to repeat them. However, we increase all latent sizes to 200 as it is expected that the
images can contain more information than for the galaxies. We also reduce the dataset
size to 5, 000, the batch size to 32 and the number of epochs for the downstream task to
35, due to the large amount of data and processing required for the experiment.

(a) Top row: original extracted RGB image
(lowest, middle and highest channel in hyper-
spectral cube); bottom row: reconstructed im-
age. Each group shows, from left to right: red,
green, and blue channels, followed by the com-
bined RGB image.

(b) Top row: original mean spectrum (averaged
across spatial domain in hyperspectral cube);
bottom row: reconstructed mean spectrum. On
the x-axis is the wavelength in nm and the y-
axis shows the radiance in mW

m2srnm .

Figure 5.27: Visualisation of test dataset sample.

The reconstruction performance is visualised in fig. 5.27. As a downstream task, the
hyperspectral cube is reconstructed to see how much information the image and spectrum
capture about it. The results are shown in table 5.10.

Metric Zp1 ∪ Zp2 ∪ Zs Zp2 ∪ Zs Zp1 ∪ Zs Zp1 ∪ Zp2 Zp1 Zp2 Zs

MSE Hyperspectral cube 364.92 403.17 369.47 345.74 351.06 730.72 408.49

Table 5.10: DMVAE with CLUB performance of all latent subspaces for HyPlant FLUO
data.

The unique information from the RGB images contains most of the information about the
hyperspectral cube. In contrast, the shared and unique spectral information contribute
less to the task. For the individual representations, it is visible that unique image features
perform best, while shared features also perform reasonably well, and unique spectral
features on their own perform worst. This is the case because the spectrum only varies
slightly, and the more essential features for reconstruction are the structure. When eval-
uating the mutual information fig. A.11, it can be seen that there are still large amounts
of MI between private 1 and shared features, which explains that the shared information
still captures a lot of information about the images. The reason for this is, as previously
described, that minimising mutual information becomes more difficult for larger latent
sizes, which we use here. We can conclude that further experiments are needed to evalu-
ate whether the hyperspectral cube can be reconstructed, which may involve testing other
hyperparameter configurations and possibly more complex models with larger dataset sizes
and more training epochs. Due to time constraints, this isn’t done here. We can, how-
ever, already observe that structural images seem to contain most of the information, and
possibly evenly spaced multispectral images could further enhance the reconstruction per-
formance. Whether it can, however, reach the precision necessary to be useful for methods
based on hyperspectral data, such as SiF retrieval, remains to be evaluated.
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5.4 Discussion

Previous experiments aimed to investigate the performance of the DMVAE with CLUB
and the influence of the CLUB loss on the model, as well as to study two different mul-
timodal physics datasets on their unique and shared features and their contributions to
different downstream tasks. Additionally, the performance was compared between single
and multimodal data.

The experiments show that the CLUB loss can minimise the mutual information be-
tween latent spaces while also slightly decreasing reconstruction and downstream task
performance and strongly decreasing cross-reconstruction performance (for some param-
eter configurations). The experiments have also demonstrated that CLUB penalises the
reconstruction performance for larger shared latent sizes, due to inherently more corre-
lations between larger latent spaces leading to larger CLUB losses. This emphasises the
need to find suitable latent sizes for a tradeoff of reconstruction, cross-reconstruction and
low inherent MI between latent spaces. Meanwhile, the CLUB loss helps to increase the
impact of the shared latent space on the downstream task performance, showing that it
helps extract more shared features while reducing the information content in the private
latent spaces. However, since the model is encouraged to learn shared features but pe-
nalised for extracting dependent representations, some unique or shared features that have
causal relations to other latent representations can be lost. The SHAP- and the subset-
based method can often reveal similar trends when evaluating contributions to a task. For
the prediction performance, it was evident that it varies for different properties and that
there is no clear trend for the latent sizes, indicating that large sizes, which capture more
details of the modalities, do not always lead to increased prediction accuracy. This shows
that even small latent sizes, which do not capture all relevant modality details, can often
still capture a similar amount of meaningful information for downstream tasks.

Using the MMU dataset, we found suitable hyperparameters for the CLUB and KL-
divergence weights as well as a reasonable learning schedule. When evaluating the MMU
dataset, it was evident that the multimodal data consistently outperformed the single-
modal data in downstream performance. The DMVAEs performed significantly better
than the VAEs and achieved similar or even better performance than the regression models,
which should serve as an upper bound on possible performance. The DMVAEs were able to
separate physical properties well in the latent space. This demonstrates that multimodal
data can increase accuracy in this case, highlighting the potential of combining image
and spectral data to enhance task performance in other contexts. When introducing a
physical-model-based differentiable decoder, a decrease in downstream performance can be
observed. Other models, such as AstroCLIP [PLG+24], can often reach better downstream
performance for physical property predictions for galaxies, although on different datasets.
Possible reasons for the low performance on certain metrics can include the preprocessing
of the image and spectrum, which could remove essential information. Also, the dataset
size may be too small and the model’s complexity too low for it to reliably predict the
physical properties. We additionally evaluated remote sensing hyperspectral data as a
source of multimodal data. Here, it was apparent that the unique information of the
structural image contains most information about the hyperspectral cube, while the unique
spectral and shared information contribute less. The performance could be limited by the
small dataset size, the inherent missing information for reasonable reconstruction of the
hyperspectral data, the limited number of training epochs, and a model that is not complex
enough to extract essential features and reconstruct the complex nature of the images.
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Chapter 6

Conclusion and Outlook

This thesis aimed to investigate multimodal disentangled representation learning and
utilise it to evaluate the influence of unique and shared information encoded across modal-
ities on task performance, studying whether multimodal data can complement each other
for increased accuracy in prediction tasks. For this, a multimodal framework was intro-
duced and implemented based on the DMVAE, which included an additional CLUB loss
term to minimise the mutual information between shared and private representations.
This framework was applied to image and spectral physics data from the multimodal uni-
verse dataset, as well as to remote sensing hyperspectral data from the HyPlant FLUO
dataset.

It was found that although the CLUB loss harms reconstruction and downstream perfor-
mance, it can minimise redundancies and help evaluate more precisely the influence of
shared and unique information on the task. CLUB was able to extract more shared infor-
mation usable for the downstream task while also harming the reconstruction performance
on larger shared latent sizes and reducing the information content in the private latent
spaces. The addition of a physical-model-based decoder did not appear to have a posi-
tive impact on the performance metrics; however, it was able to approximate meaningful
parameters.

This framework was able to evaluate the influence of the different modalities on down-
stream tasks such as physical property prediction and hyperspectral data reconstruction.
It demonstrated a varying impact of shared and unique features on physical property
prediction, as well as a significant impact of the unique feature of RGB images on hyper-
spectral reconstruction. Overall, the experiments conducted showed significantly increased
accuracy when using multimodal data when compared to single-modal data. This high-
lights the general potential of complementary multimodal (physics) data for improving
prediction accuracy in scientific tasks.

However, this approach also has some problems. The model is only able to extract unique
and shared information and thereby does not differentiate between redundant and syner-
gistic information. The framework has a large number of interdependent hyperparameters,
which may depend on the data used; therefore, these parameters must be determined in
advance. It is desired that the latent space is large enough to represent all essential features
of the data, which also needs to be determined in advance, while keeping it low enough to
minimise inherent correlations between the latent spaces and thereby keep CLUB losses
small. The results can vary due to noisy training caused by CLUB loss and noisy data.
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Also, it could potentially remove relevant shared or unique information with causal rela-
tions to other latent spaces. Furthermore, the cross-reconstruction performance between
spectra and images is unsatisfactory for too large latent spaces, and the hyperparameters
need to be fine-tuned for this when desired. It is also important to note that the model
utilises shared and unique information with respect to both modalities, rather than with
respect to the target variable from the downstream task, as is done for PID, which must
be taken into account during the interpretation of the results.

Future work could apply this framework to other physics datasets and compare it to other
similar methods, such as PID. Additionally, the influence of the three KL-divergence com-
ponents — mutual information, total correlation, and dimension-wise KL-divergence —
may be further investigated 1. Especially the first one could have a large impact. Pos-
sible extensions of this model include separate latent spaces for unique, redundant, and
synergistic information, or an improved latent structure that is closer to a Gaussian distri-
bution through the use of latent diffusion methods. Additionally, the causal relationships
between shared and unique features may be further explored. Also, it could be evaluated
if this model can be extended to three or more modalities.

Ultimately, this thesis has demonstrated the potential of complementary multimodal data
for improving the accuracy of prediction tasks. The implemented framework provides
functionality to study the unique and shared contributions of multimodal data to pre-
diction tasks. Thereby, it offers the potential to optimise multimodal sensor setups in a
given scientific experiment for a prediction task by providing a way to study how well the
multimodal data complements each other for the task.

1The framework has the functionality for penalising the different KL terms differently already imple-
mented.
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Appendix A

Additional illustrations and
resources

Code

The code for the framework implementation, experiments and evaluation methods can
be found under https://jugit.fz-juelich.de/ias-8/thesis-moritz-effen.
The code is designed to repeat all experiments that have been done directly. Addition-
ally, the resulting data from the experiments is contained in this repository. For more
details on the code and experiments, refer to the README and the corresponding code
documentation.

Plots

Figure A.1: Celestial sphere [AM].
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Figure A.2: HSC transmission filters [oJ].

A.1 Architectures

Here, the details of the models are described.

Image models

For the image encoder/decoder, we use a classical CNN structure. Here we use a similar
structure to [XSdS+23], [Dia22]. Additionally, [ICT23] employed a similar encoder-decoder
structure for images. The encoder consists of four encoder blocks, each containing a
convolution, followed by a batchnorm and a ReLU. After these four blocks, the output is
flattened and fed through a linear layer that outputs the latent space. Note that for the
VAE, the linear layer predicts mean µ and log variance log(σ) and in the DMVAE, the
linear layer predicts the µp and log(σp) for the private latent space and µs and log(σs)
for the shared latent space. The dimension of the latent spaces can be modified. This
is visualised in fig. A.3a. For the decoder, we mirror the encoder’s structure. First,
the latent variable is fed through a linear layer and then reshaped so that it can be fed
into the transpose convolution layers. Here we have four decoder blocks, which consist
of a transpose convolution followed by a batch norm layer and a leaky ReLU activation
function. Then we have a final layer consisting of a convolution and a ReLU activation
function for reconstructing the original image [XSdS+23]. This final layer enhances the
decoder’s power and should reduce checkerboard artefacts. This is visualised in fig. A.3c.
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Image
Shape: 3 × 128 × 128

Encoder Block
Output: 32 × 64 × 64

Encoder Block
Output: 64 × 32 × 32

Encoder Block
Output: 128 × 16 × 16

Encoder Block
Output: 256 × 8 × 8

Flatten
Output: 16384

Linear Layer
Output: Latent Dim

Latent Dimension

(a) Encoder architecture.

Conv2D Layer
Kernel: 3×3
Stride: 2

Padding: 1

BatchNorm2D

Leaky ReLU
negative slope: 0.01

(b) Encoder block

Latent Dimension

Fully Connected
Output: 16384

Reshape
Output: 256 × 8 × 8

Decoder Block
Output: 128 × 16 × 16

Decoder Block
Output: 64 × 32 × 32

Decoder Block
Output: 32 × 64 × 64

Decoder Block
Output: 16 × 128 × 128

Conv2D
Kernel: 3×3, Stride: 1, Padding: 1

Output: 3 × 128 × 128

ReLU
Shape: 3 × 128 × 128

Image
Shape: 3 × 128 × 128

(c) Decoder architecture.

ConvTranspose2D
Kernel: 3×3
Stride: 2

Padding: 1
OutPad: 1

BatchNorm2D

Leaky ReLU
negative slope: 0.01

(d) Decoder Block

Figure A.3: Image encoder/decoder architecture, similar to [Dia22].

Spectum models

For the spectrum encoder and decoder, we use the architecture from [ICT23], which also
consists of four decoder blocks, each containing a convolution, batch normalisation, leaky
ReLU and downsampling with maxpooling. Afterwards, the output is fed through two
linear layers, as shown in fig. A.4a. The decoder for the spectrum is again a version
of the mirrored spectrum encoder, consisting of two linear layers and an unflatten layer
that transforms the latent input into a spatial input for the subsequent steps. Here, four
decoder blocks contain a transposed convolution, a batch normalisation and the leaky
ReLU activation function. At the end, the final layers consist of a convolution, a flatten
layer, and a linear layer, which outputs the spectrum. Similarly to the image decoder,
this makes the decoder more powerful. Unlike [ICT23], we remove the activation function,
allowing the model to fit the signal range. See the structure in fig. A.4c.
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Spectrum
Shape: 1 × 4000

Encoder Block
Output: 8 × 1999

Encoder Block
Output: 16 × 998

Encoder Block
Output: 32 × 498
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Output: 64 × 248

Flatten
Output: 15.872

Linear Layer
Output: 1024

LeakyReLU
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Output: 1024

Linear Layer
Output: Latent Size

Latent Vector

(a) Encoder architecture.

Conv1D
Kernel: 5
Stride: 1
Pad: 1

BatchNorm1D

LeakyReLU
Negative Slope: 0.01

MaxPool1D
Kernel: 2

(b) Encoder Block

Latent Vector
Latent Vector

Linear Layer
Output: 1024

LeakyReLU
Negative slope: 0.01 Output: 1024

Linear Layer
Output: 16000

LeakyReLU
Negative slope: 0.01

Output: 16000

Unflatten
Output: 64 × 250

Decoder Block
Output: 32 × 502

Decoder Block
Output: 16 × 1006

Decoder Block
Output: 8 × 2014

Decoder Block
Output: 8 × 4028

Conv1D
Output: 1 × 4028

ReLU Output: 1 × 4028

Flatten
Output: 4028

Linear Layer
Output: 4000

Spectrum

(c) Decoder architecture.

ConvTranspose1D
Kernel: 5 or 3

Stride: 2
Padding: 1

Output Padding: 1

BatchNorm1D

LeakyReLU
Negative Slope: 0.01

(d) Decoder Block

Figure A.4: Encoder architecture for spectra.

Downstream model

The downstream model is a simple MLP for predicting physical properties. The architec-
ture is from [PLG+24].

Latent Vector
Input size: latent size

Linear Layer
Output: 64

LeakyReLU
Slope: 0.01

Dropout
p = 0.1

Linear Layer
Output: 64

LeakyReLU
Slope: 0.01

Dropout
p = 0.1

Linear Layer
Output: 6

Property Prediction
Output size: 6

Figure A.5: MLP for physical property downstream regression.
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A.2 Experiment plots

(a) Visualization of train and test losses (βKL =
1 in test loss).

(b) Decomposition of training loss according to
training objective (scaling included).

Figure A.6: Visualisation of test and training performance (VAE for images).

(a) Visualisation of test and train losses (βKL =
1 in test loss).

(b) Decomposition of training loss according to
training objective (scaling included).

Figure A.7: Visualisation of test and training performance (VAE for spectra).
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(a) Visualisation of test and train losses
(βKL = 1 and λCLUB = 1 in test loss).

(b) Decomposition of training loss according
to training objective (scaling included).

(c) Decomposition of training loss according to detailed training objective (scaling included).

Figure A.8: Visualisation of test and training performance of DMVAE with CLUB loss
and a latent size of 8 (Note that the losses can become significantly noisier for larger
latent space sizes. For this, we refer to the folder containing all experimental data in the
repository, where each training run has corresponding plots for showing the loss).
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(a) CLUB 1 (b) CLUB 2

Figure A.9: Approximation of the CLUB loss, with mutual estimator trained on the train
dataset and evaluation on the test dataset.

Figure A.10: Downstream performance of DMVAE with CLUB and physical decoder
showing R2 values.
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Figure A.11: Mutual information bounds for experiment 6.
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